Mutations that affect meiosis in male mice influence the dynamics of the mid-preleptotene and bouquet stages

Max-Planck-Inst. for Molecular Genetics, Ihnestr. 73, D-14195 Berlin, Germany.
Experimental Cell Research (Impact Factor: 3.37). 12/2006; 312(19):3768-81. DOI: 10.1016/j.yexcr.2006.07.019
Source: PubMed

ABSTRACT Meiosis pairs and segregates homologous chromosomes and thereby forms haploid germ cells to compensate the genome doubling at fertilization. Homologue pairing in many eukaryotic species depends on formation of DNA double strand breaks (DSBs) during early prophase I when telomeres begin to cluster at the nuclear periphery (bouquet stage). By fluorescence in situ hybridization criteria, we observe that mid-preleptotene and bouquet stage frequencies are altered in male mice deficient for proteins required for recombination, ubiquitin conjugation and telomere length control. The generally low frequencies of mid-preleptotene spermatocytes were significantly increased in male mice lacking recombination proteins SPO11, MEI1, MLH1, KU80, ubiquitin conjugating enzyme HR6B, and in mice with only one copy of the telomere length regulator Terf1. The bouquet stage was significantly enriched in Atm(-/-), Spo11(-/-), Mei1(m1Jcs/m1Jcs), Mlh1(-/-), Terf1(+/-) and Hr6b(-/-) spermatogenesis, but not in mice lacking recombination proteins DMC1 and HOP2, the non-homologous end-joining DNA repair factor KU80 and the ATM downstream effector GADD45a. Mice defective in spermiogenesis (Tnp1(-/-), Gmcl1(-/-), Asm(-/-)) showed wild-type mid-preleptotene and bouquet frequencies. A low frequency of bouquet spermatocytes in Spo11(-/-)Atm(-/-) spermatogenesis suggests that DSBs contribute to the Atm(-/-)-correlated bouquet stage exit defect. Insignificant changes of bouquet frequencies in mice with defects in early stages of DSB repair (Dmc1(-/-), Hop2(-/-)) suggest that there is an ATM-specific influence on bouquet stage duration. Altogether, it appears that several pathways influence telomere dynamics in mammalian meiosis.


Available from: Maarco Barchi, May 24, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the 1920s, József Gelei proposed that chromosome pairing in flatworms resulted from the formation of a telomere bouquet followed by the extension of synapsis from telomeres at the base of the bouquet, thus facilitating homolog pairing in a processive manner. A modern interpretation of Gelei’s model postulates that the synaptonemal complex (SC) is nucleated close to the telomeres and then extends progressively along the full length of chromosome arms. We used the easily visible meiotic chromosomes, a well-characterized genome, and RNAi in the sexual biotype of the planarian Schmidtea mediterranea to test that hypothesis. By identifying and characterizing S. mediterranea homologs of genes encoding synaptonemal complex protein 1 (SYCP1), the topoisomerase-like protein SPO11, and RAD51, a key player in homologous recombination, we confirmed that SC formation begins near the telomeres and progresses along chromosome arms during zygotene. Although distal regions pair at the time of bouquet formation, pairing of a unique interstitial locus is not observed until the formation of full-length SC at pachytene. Moreover, neither full extension of the SC nor homologous pairing is dependent on the formation of double-strand breaks. These findings validate Gelei’s speculation that full-length pairing of homologous chromosomes is mediated by the extension of the SC formed near the telomeres. S. mediterranea thus becomes the first organism described (to our knowledge) that forms a canonical telomere bouquet but does not require double-strand breaks for synapsis between homologous chromosomes. However, the initiation of SC formation at the base of the telomere bouquet, which then is followed by full-length homologous pairing in planarian spermatocytes, is not observed in other species and may not be conserved.
    Proceedings of the National Academy of Sciences 11/2014; 111(48). DOI:10.1073/pnas.1420287111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
    Cold Spring Harbor perspectives in biology 10/2014; 6(10). DOI:10.1101/cshperspect.a016675 · 8.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Absence of mitosis and meiosis are distinguishing properties of male germ cells during late fetal and early neonatal periods. Repressors of male germ cell meiosis have been identified, but mitotic repressors are largely unknown, and no protein repressing both meiosis and mitosis is known. We demonstrate here that the zinc-finger protein BNC2 is present in male but not in female germ cells. In testis, BNC2 exists as several spliced isoforms and presumably binds to DNA. Within the male germ cell lineage, BNC2 is restricted to prospermatogonia and undifferentiated spermatogonia. Fetal prospermatogonia that lack BNC2 multiply excessively on embryonic day (E)14.5 and reenter the cell cycle prematurely. Mutant prospermatogonia also engage in abnormal meiosis; on E17.5, Bnc2(-/-) prospermatogonia start synthesizing the synaptonemal protein SYCP3, and by the time of birth, many Bnc2(-/-) prospermatogonia have accumulated large amounts of nonfilamentous SYCP3, thus appearing to be blocked at leptonema. Bnc2(-/-) prospermatogonia do not undergo proper male differentiation, as they lack almost all the mRNA for the male-specific methylation protein DNMT3L and have increased levels of mRNAs that encode meiotic proteins, including STRA8. Bnc2(-/-) prospermatogonia can produce spermatogonia, but these enter meiosis prematurely and undergo massive apoptotic death during meiotic prophase. This study identifies BNC2 as a major regulator of male germ stem cells, which is required for repression of meiosis and mitosis in prospermatogonia, and for meiosis progression during spermatogenesis. In view of the extreme evolutionary conservation of BNC2, the findings described here are likely to apply to many species.
    Development 10/2014; 141(22). DOI:10.1242/dev.112888 · 6.27 Impact Factor