Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79.

Dipartimento di Agrobiologia & Agrochimica, Università degli Studi della Tuscia, Via San Camillo de Lellis snc, I-01100, Viterbo, Italy.
Antonie van Leeuwenhoek (Impact Factor: 2.07). 02/2007; 91(1):57-69. DOI: 10.1007/s10482-006-9096-4
Source: PubMed

ABSTRACT Extracellular laccase from Panus tigrinus CBS 577.79 was produced in a bubble-column reactor using glucose-containing medium supplemented with 2,5-xylidine under conditions of nitrogen sufficiency. The main laccase isoenzyme was purified to apparent homogeneity by ultra-filtration, anion-exchange chromatography and gel filtration that led to a purified enzyme with a specific activity of 317 IU (mg protein)-1 and a final yield of 66%. Laccase was found to be a monomeric protein with a molecular mass of 69.1 kDa, pI of 3.15 and 6.9% N-glycosylation of the high mannose type. Temperature and pH optima were 55 degrees C and 3.75 (2,6-dimethoxyphenol as substrate). At 50 and 60 degrees C, the enzyme half-lives were 281 and 25 min, respectively. The P. tigrinus laccase oxidized a wide range of both naturally occurring and synthetic aromatic compounds: the highest catalytic efficiencies were for 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic) acid and 2,6-dimethoxyphenol (5.99x10(6) and 3.07x10(6) M-1 s-1, respectively). Catalytic rate constants for typical N-OH redox mediators, such as 1-hydroxybenzotriazole (2.6 s-1), violuric acid (8.4 s-1) and 2,2,6,6-tetramethylpiperidin-N-oxide radical (7.8 s-1), were found to be higher than those reported for other high redox potential fungal laccases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biophysical characterization of laccase enzyme isoforms from two different xerophytic plants Cereus pterogonus and Opuntia vulgaris was carried out using EPR, fluorescence and circular dichroism (CD) spectroscopy while their thermal denaturation profiles were investigated employing differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). EPR analysis revealed the presence of endogenous copper. The hyperfine splitting of EPR spectrum reduced with increase in the complexity of enzyme protein. Raise in temperature did not alter the protein fluorescence emission suggestive of high temperature stability of the enzyme, causing the tryptophan and tyrosine residues to remain buried within the protein structure. Far-UV CD spectrum revealed existence of 60 % random coils in enzyme structure even at elevated temperatures and in presence of metal ions and protein denaturants. DSC analysis provided a Tm in the range 95–121 °C for the native and 158–199 °C for the metal associated laccase isoforms. Loss in weight of the enzyme protein by 10–18 % was noted up to 100 °C when determined through TGA. The thermostable plant xerophytic laccase enzyme isoforms will be of potential use in textile, dyeing, pulping and biotechnology applications.
    Cellulose 01/2013; 20(1):115. · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim of this work was to investigate the ability of Lentinus (Panus) tigrinus to degrade and detoxify a chlorobenzoate (CBA) mixture composed of mono-, di- and tri-chlorinated isomers. The degradation process was investigated as a function of both the growing medium (i.e. low N Kirk's and malt extract-glucose medium) and cultivation conditions (i.e. stationary and shaken cultures). The majority of CBAs were quantitatively degraded within the early 15 d from spiking with the notable exception of the double ortho-chlorinated compounds, 2,6-di-, 2,3,6-tri- and 2,4,6-tri-CBA. Analysis of the degradation intermediates indicated the occurrence of side chain reduction, hydroxylation and methylation reactions. Although CBAs stimulated laccase production, in vitro experiments with a purified L. tigrinus laccase isoenzyme demonstrated its inability to participate in the initial attack on CBAs even in the presence of redox mediators; similar results were found with a Mn-peroxidase isoenzyme. Conversely, prompt degradation was observed upon 1h incubation of CBAs with a purified microsomal fraction containing cytochrome P-450 monooxygenase. The nature of some reaction products (i.e. hydroxylated derivatives), the dependency of the reaction on NADPH and its susceptibility to either CO or piperonyl butoxide inhibition confirmed the involvement of L. tigrinus cytochrome P-450 in the early steps of CBA degradation.
    Journal of hazardous materials 07/2013; 260C:975-983. · 4.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study reports a new white-rot fungus Cerrena sp. WR1, identified based on an 18S rDNA sequence, which can secrete extracellular forms of laccase with a maximal activity reaching 202 000 U l(-1) in a 5-l fermenter. A laccase protein, designated Lcc3, was purified and shown to be N-linked glycosylated by PNGase F and liquid chromatography tandem mass spectrometry analyses. The respective full-length cDNA gene (lcc3) of the Lcc3 protein was obtained using polymerase chain reaction-based methods. Kinetic studies showed that the K(m) and k(cat) of the native Lcc3 were 3.27 μM and 934.6 s(-1) for 2,2'-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid), 849.1 μM and 147.9 s(-1) for guaiacol, 392.7 μM and 109.2 s(-1) for 2,6-dimethoxyphenol, and 881 μM and 115.5 s(-1) for catechol, respectively. The T(m) of Lcc3 was determined at 73.9°C and it showed a long t(1/2) (120 min) at 50°C. The laccase was highly ethanol resistant, with 80% of its original activity was detected when incubated in 25% ethanol for 14 days. Furthermore, crude enzyme broth or Lcc3 could degrade lignin in kraft paper (26.5%), and showed high decoloration efficiency (90%) on synthetic dye Remazol Brilliant Blue R. Together, these data demonstrate that Cerrena sp. WR1 Lcc3 possesses novel biochemical and kinetic properties that may aid its application in industry.
    Protein Engineering Design and Selection 10/2012; · 2.59 Impact Factor


Available from
May 21, 2014