CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production.

Dipartimento di Biopatologia e Metodologie Biomediche, Università di Palermo, Palermo, Italy.
The Journal of Immunology (Impact Factor: 5.52). 11/2006; 177(8):5290-5.
Source: PubMed

ABSTRACT Vgamma9Vdelta2 T lymphocytes recognize nonpeptidic Ags and mount effector functions in cellular immune responses against microorganisms and tumors, but little is known about their role in Ab-mediated immune responses. We show here that expression of CXCR5 identifies a unique subset of Vgamma9Vdelta2 T cells which express the costimulatory molecules ICOS and CD40L, secrete IL-2, IL-4, and IL-10 and help B cells for Ab production. These properties portray CXCR5+ Vgamma9Vdelta2 T cells as a distinct memory T cell subset with B cell helper function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background It has been suggested that interleukin (IL)-17 and IL-22 play important roles in the elicitation of human allergic contact dermatitis; however, the frequencies of T cell subtypes producing IL-17 and IL-22 in human allergic contact dermatitis are unknown. Objectives To determine the frequencies of CD4(+) , CD8(+) and γδ T cells producing IL-17, IL-22 and interferon (IFN)-γ in the blood and skin from nickel-allergic patients. Patients/materials/methods Blood samples were collected from 14 patients and 17 controls, and analysed by flow cytometry. Biopsies were taken from 5 patients and 6 controls, and analysed by immunohistochemistry and flow cytometry of skin lymphocytes. Results We found an increased frequency of γδ T cells in the blood, but no differences in the distribution of cytokine-producing CLA(+) T cell subtypes in nickel-allergic patients as compared with controls. In nickel-allergic patients, there was massive cellular infiltration dominated by CD4(+) T cells producing IL-17, IL-22 and IFN-γ in nickel-challenged skin but not in vehicle-challenged skin. Conclusion CD4(+) T cells producing IL-17, IL-22 and IFN-γ are important effector cells in the eczematous reactions of nickel-induced allergic contact dermatitis in humans.
    Contact Dermatitis 06/2013; 68(6):339-47. · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Antibody production is an important feature of the vertebrate immune system. Antibodies neutralize and clear pathogens, thereby protecting against infectious diseases. Such humoral immunity has great longevity, often persisting for the host's lifetime. Long-lived humoral immunity depends on help provided by CD4(+) T cells, namely T follicular helper (TFH) cells, which support the differentiation of antigen-specific B cells into memory and plasma cells. TFH cells are stringently regulated, as aberrant TFH cell activity is involved in immunopathologies such as autoimmunity, immunodeficiencies and lymphomas. The elucidation of the mechanisms that regulate TFH cell differentiation, function and fate should highlight targets for novel therapeutics.
    Nature Reviews Immunology 05/2013; · 32.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vγ9Vδ2 (also termed Vγ2Vδ2) T cells, a major human peripheral blood γδ T cell subset, recognize microbial (E)-4-hydroxy-3-methylbut-2-enyl diphosphate and endogenous isopentenyl diphosphate in a TCR-dependent manner. The recognition does not require specific accessory cells, antigen uptake, antigen processing, or MHC class I, class II, or class Ib expression. This subset of T cells plays important roles in mediating innate immunity against a wide variety of infections and displays potent and broad cytotoxic activity against human tumor cells. Because γδT cells express both natural killer receptors such as NKG2D and γδ T cell receptors, they are considered to represent a link between innate and adaptive immunity. In addition, activated γδ T cells express a high level of antigen-presenting cell-related molecules and can present peptide antigens derived from destructed cells to αβ T cells. Utilizing these antimicrobial and anti-tumor properties of γδ T cells, preclinical and clinical trials have been conducted to develop novel immunotherapies for infections and malignancies. Here, we review the immunological properties of γδ T cells including the underlying recognition mechanism of nonpeptitde antigens and summarize the results of γδ T cell-based therapies so far performed. Based on the results of the reported trials, γδ T cells appear to be a promising tool for novel immunotherapies against certain types of diseases.
    International journal of biological sciences 01/2014; 10(2):119-135. · 3.17 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014