Phototaxis and Impaired Motility in Adenylyl Cyclase and Cyclase Receptor Protein Mutants of Synechocystis sp. Strain PCC 6803

Carnegie Institution, 260 Panama Street, Stanford, CA 94305, USA.
Journal of Bacteriology (Impact Factor: 2.81). 11/2006; 188(20):7306-10. DOI: 10.1128/JB.00573-06
Source: PubMed


We have carefully characterized and reexamined the motility and phototactic responses of Synechocystis sp. adenylyl cyclase (Cya1) and catabolite activator protein (SYCRP1) mutants to different light regimens, glucose, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and cyclic AMP. We find that contrary to earlier reports, cya1 and sycrp1 mutants are motile and phototactic but are impaired in one particular phase of phototaxis in comparison with wild-type Synechocystis sp. Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Download full-text


Available from: Kenlee Nakasugi,
  • Source
    • "They generate cAMP, which is a second messenger that participates in a wide variety of signal transduction systems. In Synechocystis a cya1 knockout has been shown to be impaired in motility [42,43]. The effects of a frameshift mutation in cya1 could be very far reaching however and affect cellular regulation in many ways beyond its motility. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Temperature tolerance is an important aspect for commercial scale outdoor cultivation of microalgae and cyanobacteria. While various genes are known to be related to Synechocystis sp. PCC6803's heat shock response, there is very limited published data concerning the specific genes involved in long term thermal tolerance. We have previously used random mutagenesis and adaptive evolution to generate a mixture of strains of Synechocystis sp. PCC6803 with significantly increased thermal tolerance. The genetic modifications leading to the phenotypes of the newly generated strains are the focus of this work. Results We used a custom screening platform, based on 96-deepwell microplate culturing in an in house designed cultivation chamber integrated in a liquid handling robot for screening and selection; in addition we also used a more conventional system. The increased thermal tolerances of the isolated monoclonal strains were validated in larger bioreactors and their whole genomes sequenced. Comparison of the sequence information to the parental wild type identified various mutations responsible for the enhanced phenotypes. Among the affected genes identified are clpC, pnp, pyk2, sigF, nlpD, pyrR, pilJ and cya1. Conclusions The applied methods (random mutagenesis, in vivo selection, screening, validation, whole genome sequencing) were successfully applied to identify various mutations, some of which are very unlikely to have been identified by other approaches. Several of the identified mutations are found in various strains and (due to their distribution) are likely to have occurred independently. This, coupled with the relatively low number of affected genes underscores the significance of these specific mutations to convey thermal tolerance in Synechocystis.
    BMC Biotechnology 07/2014; 14(1):66. DOI:10.1186/1472-6750-14-66 · 2.03 Impact Factor
  • Source
    • "A polyclonal a-Cph2(5-6) antibody was used for detection of Cph2. ses (Bhaya et al., 2006). Wild-type (WT) Synechocystis 6803 cells do not move towards blue light, whereas Dcph2 mutant cells show positive, blue light-dependent phototaxis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cph2 from the cyanobacterium Synechocystis sp. PCC 6803 is a hybrid photoreceptor that comprises an N-terminal module for red/far-red light reception and a C-terminal module switching between a blue- and a green-receptive state. This unusual photoreceptor exerts complex, light quality-dependent control of the motility of Synechocystis sp. PCC 6803 cells by inhibiting phototaxis towards blue light. Cph2 perceives blue light by its third GAF domain that bears all characteristics of a cyanobacteriochrome (CBCR) including photoconversion between green- and blue-absorbing states as well as formation of a bilin species simultaneously tethered to two cysteines, C994 and C1022. Upon blue light illumination the CBCR domain activates the subsequent C-terminal GGDEF domain, which catalyses formation of the second messenger c-di-GMP. Accordingly, expression of the CBCR-GGDEF module in Δcph2 mutant cells restores the blue light-dependent inhibition of motility. Additional expression of the N-terminal Cph2 fragment harbouring a red/far-red interconverting phytochrome fused to a c-di-GMP degrading EAL domain restores the complex behaviour of the intact Cph2 photosensor. c-di-GMP was shown to regulate flagellar and pili-based motility in several bacteria. Here we provide the first evidence that this universal bacterial second messenger is directly involved in the light-dependent regulation of cyanobacterial phototaxis.
    Molecular Microbiology 05/2012; 85(2):239-51. DOI:10.1111/j.1365-2958.2012.08106.x · 4.42 Impact Factor
  • Source
    • "Synechocystis sp. PCC 6803 (PCC6803) [8,9,23-26] and Anabaena sp. PCC 7120 (PCC7120) [27,28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic AMP receptor protein (CRP), also known as catabolite gene activator protein (CAP), is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The loss of CRPs in these species leads to the rapid loss of their binding sites in the genomes.
    BMC Genomics 02/2009; 10(1):23. DOI:10.1186/1471-2164-10-23 · 3.99 Impact Factor
Show more