Tcf3 Governs Stem Cell Features and Represses Cell Fate Determination in Skin

Howard Hughes Medical Institute, Department of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, Box 300, New York, NY 10021, USA.
Cell (Impact Factor: 33.12). 11/2006; 127(1):171-83. DOI: 10.1016/j.cell.2006.07.036
Source: PubMed

ABSTRACT Many stem cells (SCs) respond to Wnt signaling, but whether beta-catenin's DNA binding partners, the Tcfs, play a role in SCs in the absence of Wnts, is unknown. In adult skin, quiescent multipotent progenitors express Tcf3 and commit to a hair cell fate in response to Wnt signaling. We find that embryonic skin progenitors also express Tcf3. Using an inducible system in mice, we show that upon Tcf3 reactivation, committed epidermal cells induce genes associated with an undifferentiated, Wnt-inhibited state and Tcf3 promotes a transcriptional program shared by embryonic and postnatal SCs. Further, Tcf3-repressed genes include transcriptional regulators of the epidermal, sebaceous gland and hair follicle differentiation programs, and correspondingly, all three terminal differentiation pathways are suppressed when Tcf3 is induced postnatally. These data suggest that in the absence of Wnt signals, Tcf3 may function in skin SCs to maintain an undifferentiated state and, through Wnt signaling, directs these cells along the hair lineage.

Download full-text


Available from: Michael Rendl, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals mainly through the BMP pathway from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
    Journal of Molecular Cell Biology 01/2015; DOI:10.1093/jmcb/mjv005 · 8.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we introduce the “Tet-Transgenic Rodents” database, documenting most of the published Tet-transgenic mouse lines generated in the past 2 decades. Aside from the >500 mouse lines listed, it also includes the first of the recently reported Tet-transgenic rat models. Since the Tet technology comprises two essential components, a cis-acting promoter (Ptet) and a trans-acting transactivator, the database has been organized accordingly. One section of the database summarizes the different transgenic mouse lines carrying mostly tissue specific promoters driving the Tet transactivator. Another section covers transgenic mouse lines carrying responder transgenes under Ptet control. The few existing rat transgenic lines are listed correspondingly. It is the purpose of this database to facilitate the repeated use of preexisting, validated transgenic lines as a shortcut for further research.
    Transgenic Research 11/2012; DOI:10.1007/s11248-012-9660-9 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of features contributed to establishing the mouse as the favorite model organism for skin research: the genetic and pathophysiological similarities to humans, the small size and relatively short reproductive period, meaning low maintenance costs, and the availability of sophisticated tools for manipulating the genome, gametes, and embryos. While initial studies depended on strains displaying skin abnormalities due to spontaneous genetic mutations, the availability of the transgenic and knockout technologies and their astonishing perfection during the last decades allowed the development of mouse lines permitting any imaginable genetic modification including gene inactivation, substitution, modification, or overexpression. While these technologies have already contributed to the functional analysis of several genes and processes related to skin research, continued progress requires understanding, awareness, and access to these mouse resources. This review will identify the strategies currently employed for the genetic manipulation of mice in skin research, and outline current resources and their limitations. genesis 50:652-664, 2012. © 2012 Wiley Periodicals, Inc.
    genesis 09/2012; 50(9):652-64. DOI:10.1002/dvg.22029 · 2.04 Impact Factor

Similar Publications