Simultaneous determination of total human and male DNA using a duplex real-time PCR assay

Vermont Forensic Laboratory, Department of Public Safety, 103 S. Main St., Waterbury, VT 05671, USA.
Journal of Forensic Sciences (Impact Factor: 1.31). 10/2006; 51(5):1005-15. DOI: 10.1111/j.1556-4029.2006.00211.x
Source: PubMed

ABSTRACT A single duplex assay to determine both the amount of total human DNA and the amount of male DNA in a forensic sample has been developed. This assay is based on TaqMan technology and uses the multicopy Alu sequence to quantitate total human DNA and the multicopy DYZ5 sequence to quantitate Y chromosomal (male) DNA. The assay accepts a wide concentration range of input DNA (2 muL of 64 ng/microL to 0.5 pg/microL), and also allows detection of PCR failure. The PCR product sizes Alu (127 bp) and DYZ5 (137bp) approximate that of the smaller short tandem repeats (STRs) which should make the assay predictive of STR success with degraded DNA. The assay was optimized for probe/primer concentrations and BSA addition and validated on its reproducibility, on its human specificity, on its nonethnic variability, for artificial mixtures and adjudicated casework, for the effect of inhibitors and for state of DNA degradation. This assay should prove very usual in forensic analyses because knowing the relative amounts of male versus female DNA can allow the examiner to decide which samples may yield the most probative value in a case or direct the samples to methods that would yield the greatest information.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progressive multisystem disease should invoke consideration of potential mitochondrial etiologies. Mitochondrial disease can affect any organ system at any time, particularly involving neurologic, cardiac, muscular, gastroenterologic, and/or ophthalmologic manifestations. We report here a 19-year-old Caucasian man who was followed since birth in multiple pediatric subspecialty clinics for myelomeningocele complications. However, he progressively developed a host of additional problems that were not readily attributable to his neural tube defect involving developmental, ophthalmologic, cardiac, muscular, endocrine, and intermediary metabolic manifestations. Clinical diagnostic testing limited to analysis for common point mutations and deletions in his blood mitochondrial DNA (mtDNA) was not revealing. Skeletal muscle biopsy revealed abnormal mitochondrial morphology and immunostaining, mitochondrial proliferation, and mildly reduced respiratory chain complex I-III activity. Whole mitochondrial genome sequencing analysis in muscle identified an apparently homoplasmic, novel, m.12264C>T transition in the tRNA serine (AGY) gene. The pathogenicity of this mutation was supported by identification of it being present at low heteroplasmy load in his blood (34%) as well as in blood from his maternal grandmother (1%). The proband developed severe nuclear cataracts that proved to be homoplasmic for the pathogenic mtDNA m.12264C>T mutation. This case highlights the value of pursuing whole mitochondrial genome sequencing in symptomatic tissues in the diagnostic evaluation of suspected mitochondrial disease. Furthermore, it is the first report to directly implicate a single mtDNA mutation in the pathogenesis of ocular cataracts and clearly illustrates the important contribution of normal metabolic activity to the function of the ocular lens.
    Discovery medicine 02/2012; 13(69):143-50. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The analysis of short tandem repeats is one of the most powerful tools in forensic genetics. Forensic practice sometimes requires the individualization of samples that may contain only highly degraded nuclear DNA, mitochondrial DNA or PCR inhibitors that hamper DNA amplification. We designed a new multiplex PCR with reduced size amplicons (<200 bp), providing a double sex determination (amelogenin plus two Y-STRs), the detection of two autosomal markers and the amplification of mitochondrial specific fragments from the hypervariable region I (HVI). Additionally, a quality sensor was developed to check for the presence of any PCR inhibitors. The new multiplex PCR shows a reproducible detection threshold down to 25 pg and gives signals even out of highly degraded materials. All signals are reproducible and reliable as it could be shown in comparison to results from commercially available STR multiplex-PCRs. In no case DNA fragments were detectable using any other assay when the quality sensor was not detectable. There was a good correlation between detection of mitochondrial specific fragments in the multiplex-PCR and success of subsequent sequencing of HVI region. The same could be shown for STR analysis: Most samples successfully analyzed in our PCR yielded at least a partial STR profile using a commercial STR kit. We present an assay that allows an easy, reliable, and cost efficient evaluation of DNA sample quality combined with a first rough sample individualization and sex determination suitable for forensic purposes. This assay may help the forensic lab personnel to decide on further sample processing.
    Forensic Science International: Genetics 03/2009; 3(2):96-103. DOI:10.1016/j.fsigen.2008.11.007 · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A quadruplex real-time qPCR assay was developed to simultaneously assess total human DNA, human male DNA, DNA degradation and PCR inhibitors in forensic samples. Specifically, the assay utilizes a approximately 170-190bp target sequence that spans the TH01 STR locus to quantify total human DNA (nuTH01), a 137 bp target sequence directly adjacent to the SRY gene to quantify human male DNA (nuSRY), a 67 bp target sequence flanking the CSF1PO STR locus (nuCSF) to assess degradation (nuCSF:nuTH01 ratio) and a 77 bp synthetic DNA template used as an internal PCR control target sequence (IPC) for the assessment of PCR inhibition. Validation studies, performed on an ABI 7500 SDS instrument using TaqMan and TaqManMGB detection, indicate each of the targets in the quadruplex assay performs effectively and is informative even when challenged with DNase-degraded and hematin-inhibited samples. The nuTH01-nuSRY-nuCSF-IPC quadruplex qPCR assay is envisioned to assist in the choice of the most informative DNA typing system available, which may include standard autosomal STR typing when the results indicate the presence of non-degraded, single gender DNA or non-degraded, male:female mixtures at ratios expected to yield probative alleles; Y STR typing in samples containing a male component that is overwhelmed by the presence of an excess of female DNA; reduced amplicon size STR typing ("MiniSTRs") where the nuCSF:nuTH01 ratio indicates the sample is highly degraded; enhanced STR amplification with additional AmpliTaq Gold/BSA and/or sample clean-up when the presence of PCR inhibitors is suggested by a delayed IPC C(T) value or mitochondrial DNA typing in samples where little to no nuclear DNA is detected. The present study includes evaluations of species specificity, sensitivity, precision, reproducibility, male-female mixtures, population samples and applications to various casework-type samples as indicated by the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines.
    Forensic Science International: Genetics 04/2008; 2(2):108-25. DOI:10.1016/j.fsigen.2007.09.001 · 3.20 Impact Factor