Article

Decidual stromal cell response to paracrine signals from the trophoblast: Amplification of immune and angiogenic modulators

Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States
Biology of Reproduction (Impact Factor: 3.45). 02/2007; 76(1):102-17. DOI: 10.1095/biolreprod.106.054791
Source: PubMed

ABSTRACT During the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important for successful embryonic implantation, including establishing the placental vasculature, anchoring the placenta to the uterine wall, and promoting the immunoacceptance of the fetal allograph. To our knowledge, global crosstalk between the trophoblast and the decidua has not been elucidated to date, and the present study used a functional genomics approach to investigate these paracrine interactions. Human endometrial stromal cells were decidualized with progesterone and further treated with conditioned media from human trophoblasts (TCM) or, as a control, with control conditioned media (CCM) from nondecidualized stromal cells for 0, 3, and 12 h. Total RNA was isolated and processed for analysis on whole-genome, high-density oligonucleotide arrays containing 54,600 genes. We found that 1374 genes were significantly upregulated and that 3443 genes were significantly downregulated after 12 h of coincubation of stromal cells with TCM, compared to CCM. Among the most upregulated genes were the chemokines CXCL1 (GRO1) and IL8,CXCR4, and other genes involved in the immune response (CCL8 [SCYA8], pentraxin 3 (PTX3), IL6, and interferon-regulated and -related genes) as well as TNFAIP6 (tumor necrosis factor alpha-induced protein 6) and metalloproteinases (MMP1, MMP10, and MMP14). Among the downregulated genes were growth factors, e.g., IGF1, FGF1, TGFB1, and angiopoietin-1, and genes involved in Wnt signaling (WNT4 and FZD). Real-time RT-PCR and ELISAs, as well as immunohistochemical analysis of human placental bed specimens, confirmed these data for representative genes of both up- and downregulated groups. The data demonstrate a significant induction of proinflammatory cytokines and chemokines, as well as angiogenic/static factors in decidualized endometrial stromal cells in response to trophoblast-secreted products. The data suggest that the trophoblast acts to alter the local immune environment of the decidua to facilitate the process of implantation and ensure an enriched cytokine/chemokine environment while limiting the mitotic activity of the stromal cells during the invasive phase of implantation.

0 Bookmarks
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a member of the chemokine family, CXCL3 was previously known to participate in many pathophysiological events. However, whether CXCL3 stimulates trophoblast invasion as a key process of preeclampsia pathogenesis remains largely unknown. Therefore, the aim of this study was to investigate this hypothesis and determine the effect of CXCL3 on the first trimester trophoblast. Seventy gravidas were included in this study. ELISA was used to detect CXCL3 plasma levels on preeclampsia and normal pregnant groups. CXCL3 protein and mRNA levels were detected via Western blot and real-time quantitative PCR analysis after immunolocalized in human placenta. Moreover, the CXCL3 function in HTR-8/Svneo was analyzed via WST-1 assay, flow cytometry and invasion test. The plasma CXCL3 level in preeclampsia was significantly higher than that in normal pregnancy. CXCL3 expression was observed in the cytoplasm of placental trophoblasts and vascular endothelium in all groups without significant difference between maternal and fetal sides. In addition, placenta CXCL3 expression in severe preeclampsia was significantly lower than those in normal and mild PE groups. Moreover, exogenous CXCL3 can promote the proliferation and invasion of HTR-8/Svneo; however, its effect on apoptosis remains unclear. In summary, a significant abnormality of plasma CXCL3 level and placental CXCL3 expression was discovered in severe preeclampsia; CXCL3 had a function in trophoblast invasion, which indicated its participation in shallow implantation. Therefore CXCL3 might be involved in severe preeclampsia pathogenesis.
    PLoS ONE 12/2014; 9(12):e114408. DOI:10.1371/journal.pone.0114408 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signalling has important roles in decidualisation, implantation and placentation. We investigated the role of decidua-trophoblast communication and Wnt signalling in the placenta using a co-culture model. Expression of a wide range of Wnt-related genes was observed in both decidual and trophoblast cells using PCR array, with remarkably similar expression profiles. Co-culture induced altered expression of several Wnt-related proteins, with the Wnt inhibitors sFPR4 and DKK1 being among the most differentially expressed genes. Media concentrations of sFRP4 and DKK1 were increased with co-culture, coincident with a decrease in canonical Wnt signalling activity. Expression of PTGS1 mRNA and COX1 protein was also increased with co-culture as were media PGE2 concentrations; these changes were replicated by addition of exogenous DKK1 and sFRP4. Collectively, these data suggest that paracrine interactions between decidua and trophoblast stimulate Wnt antagonist secretion leading to increased placental prostaglandin production. This may be important for implantation and placental function.
    Molecular and Cellular Endocrinology 02/2015; DOI:10.1016/j.mce.2015.02.003 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NOD2 gene, encoding intracellular paternal recognition receptor (PRR) also called caspase activation and recruitment domain 15 (CARD15), is mutated in Crohn's disease, an autoimmune-disorder. Unexplained recurrent spontaneous abortion (URSA) involved in complex auto-immune disorder. However, little is known about the expression of NOD2 protein at maternal-fetal interface with URSA patients. Our aim was to compare the expression levels of NOD2 in the decidual stromal cells (DSCs) from patients with normal pregnancy to those with unexplained recurrent spontaneous abortion (URSA) during first trimester pregnancy. Tissues and DSCs were collected from 12 patients with URSA and 26 patients with normal pregnancies that required abortion. DSCs in the normal pregnancy group showed significantly higher mRNA and protein levels of NOD2 than those isolated from the URSA group using real time PCR and in cell western. The appropriate expression of NOD2 in normal DSCs suggests that this protein may be required to sustain normal pregnancy.
    International journal of clinical and experimental pathology 01/2014; 7(12):8784-90. · 1.78 Impact Factor

Full-text

Download
51 Downloads
Available from
Jun 4, 2014