Article

Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism.

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2007; 281(48):36993-8. DOI: 10.1074/jbc.M608158200
Source: PubMed

ABSTRACT A model has been proposed for the exofacial configuration of the Glut1 glucose transporter in which eight transmembrane domains form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 12, predicted to be an outer helix in this hypothetical model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A previously characterized functional cysteine-less Glut1 molecule was used to produce 21 Glut1 point mutants by changing each residue along helix 12 to a cysteine residue. These mutants were then expressed in Xenopus oocytes, and their protein levels, functional activities, and sensitivities to pCMBS were determined. Strikingly, in contrast to all nine other predicted Glut1 transmembrane helices that have been previously examined by this method, none of the 21 helix 12 single-cysteine mutants exhibited significant inhibition of specific transport activity. Also unlike most other Glut1 transmembrane domains in which solvent-accessible residues lie along a single face of the helix, mutations in five consecutive residues predicted to lie close to the exofacial face of the membrane resulted in sensitivity to pCMBS-induced transport inhibition. These results suggest that helix 12 plays a passive stabilizing role in the structure of Glut1 and is not directly involved in the transport mechanism. Additionally, the pCMBS data indicate that the predicted exoplasmic end of helix 12 is completely exposed to the external solvent when the transporter is in its exofacial configuration.

0 Bookmarks
 · 
53 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human blood brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes where GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in HEK 293 cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8 and 11 also contribute to a less abundant hetero-complex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6 and 10 nm Stokes radius particles which correspond to GLUT1 dimers and tetramers respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6 and 10 nm Stokes radius particles whereas GLUT3 resolves as a 6 nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6 and 10 nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6 and 4 nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.
    Journal of Biological Chemistry 05/2013; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Major Facilitator Superfamily (MFS) is a diverse group of secondary transporters with over 10,000 members, found in all kingdoms of life, including Homo sapiens. One objective of determining crystallographic models of the bacterial representatives is identification and physical localization of residues important for catalysis in transporters with medical relevance. The recently solved crystallographic models of the d-xylose permease XylE from Escherichia coli and GlcP from Staphylococcus epidermidus, homologs of the human d-glucose transporters, the GLUTs (SLC2), provide information about the structure of these transporters. The goal of this work is to examine general concepts derived from the bacterial XylE, GlcP, and other MFS transporters for their relevance to the GLUTs by comparing conservation of functionally critical residues. An energy landscape for symport and uniport is presented. Furthermore, the substrate selectivity of XylE is compared with GLUT1 and GLUT5, as well as a XylE mutant that transports d-glucose.
    Proceedings of the National Academy of Sciences 02/2014; 111(7):E719-27. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Glucose transporter 4 (GLUT4) is an insulin facilitated glucose transporter that plays an important role in maintaining blood glucose homeostasis. GLUT4 is sequestered into intracellular vesicles in unstimulated cells and translocated to the plasma membrane by various stimuli. Understanding the structural details of GLUT4 will provide insights into the mechanism of glucose transport and its regulation. To date, a crystal structure for GLUT4 is not available. However, earlier work from our laboratory proposed a well validated homology model for GLUT4 based on the experimental data available on GLUT1 and the crystal structure data obtained from the glycerol 3-phosphate transporter. Methodology/Principal Findings: In the present study, the dynamic behavior of GLUT4 in a membrane environment was analyzed using three forms of GLUT4 (apo, substrate and ATP-substrate bound states). Apo form simulation analysis revealed an extracellular open conformation of GLUT4 in the membrane favoring easy exofacial binding of substrate. Simulation studies with the substrate bound form proposed a stable state of GLUT4 with glucose, which can be a substrate-occluded state of the transporter. Principal component analysis suggested a clockwise movement for the domains in the apo form, whereas ATP substrate-bound form induced an anti-clockwise rotation. Simulation studies suggested distinct conformational changes for the GLUT4 domains in the ATP substrate-bound form and favor a constricted behavior for the transport channel. Various inter-domain hydrogen bonds and switching of a salt-bridge network from E345-R350-E409 to E345-R169-E409 contributed to this ATP-mediated channel constriction favoring substrate occlusion and prevention of its release into cytoplasm. These data are consistent with the biochemical studies, suggesting an inhibitory role for ATP in GLUT-mediated glucose transport. Conclusions/Significance: In the absence of a crystal structure for any glucose transporter, this study provides mechanistic details of the conformational changes in GLUT4 induced by substrate and its regulator.