Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2007; 281(48):36993-8. DOI: 10.1074/jbc.M608158200
Source: PubMed

ABSTRACT A model has been proposed for the exofacial configuration of the Glut1 glucose transporter in which eight transmembrane domains form an inner helical bundle stabilized by four outer helices. The role of transmembrane segment 12, predicted to be an outer helix in this hypothetical model, was examined by cysteine-scanning mutagenesis and the substituted cysteine accessibility method using the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). A previously characterized functional cysteine-less Glut1 molecule was used to produce 21 Glut1 point mutants by changing each residue along helix 12 to a cysteine residue. These mutants were then expressed in Xenopus oocytes, and their protein levels, functional activities, and sensitivities to pCMBS were determined. Strikingly, in contrast to all nine other predicted Glut1 transmembrane helices that have been previously examined by this method, none of the 21 helix 12 single-cysteine mutants exhibited significant inhibition of specific transport activity. Also unlike most other Glut1 transmembrane domains in which solvent-accessible residues lie along a single face of the helix, mutations in five consecutive residues predicted to lie close to the exofacial face of the membrane resulted in sensitivity to pCMBS-induced transport inhibition. These results suggest that helix 12 plays a passive stabilizing role in the structure of Glut1 and is not directly involved in the transport mechanism. Additionally, the pCMBS data indicate that the predicted exoplasmic end of helix 12 is completely exposed to the external solvent when the transporter is in its exofacial configuration.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ETT (originally designated as OCTN1; human gene symbol SLC22A4) and CTT (OCTN2; SLC22A5) are highly specific transporters of ergothioneine and carnitine, respectively. Despite a high degree of sequence homology, both carriers discriminate precisely between substrates: ETT does not transport carnitine, and CTT does not transport ergothioneine. Our aim was to turn ETT into a transporter for carnitine and CTT into a transporter for ergothioneine by a limited number of point mutations. From a multiple alignment of several mammalian amino acid sequences, those positions were selected for conversion that were momentously different between ETT and CTT from human but conserved among all orthologues. Mutants were expressed in 293 cells and assayed for transport of ergothioneine and carnitine. Several ETT mutants clearly catalyzed transport of carnitine, up to 35% relative to wild-type CTT. Amazingly, complementary substitutions in CTT did not provoke transport activity for ergothioneine. In similar contrast, carnitine transport by CTT mutants was abolished by very few substitutions, whereas ergothioneine transport by ETT mutants was maintained even with the construct most active in carnitine transport. To explain these results, we propose that ETT and CTT use dissimilar pathways for conformational change, in addition to incongruent substrate binding sites. In other words, carnitine is excluded from ETT by binding, and ergothioneine is excluded from CTT by turnover movement. Our data indicate amino acids critical for substrate discrimination not only in transmembrane segments 5, 7, 8, and 10, but also in segments 9 and 12 which were hitherto considered as unimportant.
    Biochimica et Biophysica Acta 10/2009; 1788(12):2594-602. DOI:10.1016/j.bbamem.2009.09.019 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The substrate specificity of the facilitated hexose transporter, GLUT, family, (gene SLC2A) is highly varied. Some appear to be able to translocate both glucose and fructose, while the ability to handle 2-deoxyglucose and galactose does not necessarily correlate with the other two hexoses. It has become generally accepted that a central substrate binding/translocation site determines which hexoses can be transported. However, a recent study showed that a single point mutation of a hydrophobic residue in GLUTs 2, 5 & 7 removed their ability to transport fructose without affecting the kinetics of glucose permeation. This residue is in the 7th transmembrane helix, facing the aqueous pore and lies close to the opening of the exofacial vestibule. This study expands these observations to include the other class II GLUTs (9 & 11) and shows that a three amino acid motif (NXI/NXV) appears to be critical in determining if fructose can access the translocation mechanism. GLUT11 can also transport fructose, but it has the motif DSV at the same position, which appears to function in the same manner as NXI and when all three residues are replaced with NAV fructose transport lost. These results are discussed in relation to possible roles for hydrophobic residues lining the aqueous pore at the opening of the exofacial vestibule. Finally, the possibility that the translocation binding site may not be the sole determinant of substrate specificity for these proteins is examined.
    Molecular Membrane Biology 01/2007; 24(5-6):455-63. DOI:10.1080/09687680701298143 · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recent sequencing of the human genome has resulted in the addition of nine new hGLUT isoforms to the SLC2A family, many of which have widely varying substrate specificity, kinetic behavior, and tissue distribution. This review examines some new hypotheses related to the structure and function of these proteins.
    Physiology 09/2007; 22:234-40. DOI:10.1152/physiol.00011.2007 · 5.65 Impact Factor