Multiview-based computer-aided detection scheme for breast masses.

Department of Radiology, University of Pittsburgh, 300 Halket Street, Suite 4200, Pittsburgh, Pennsylvania 15213, USA.
Medical Physics (Impact Factor: 2.91). 09/2006; 33(9):3135-43. DOI:10.1118/1.2237476
Source: PubMed

ABSTRACT In this study, we developed and tested a new multiview-based computer-aided detection (CAD) scheme that aims to maintain the same case-based sensitivity level as a single-image-based scheme while substantially increasing the number of masses being detected on both ipsilateral views. An image database of 450 four-view examinations (1800 images) was assembled. In this database, 250 cases depicted malignant masses, of which 236 masses were visible on both views and 14 masses were visible only on one view. First, we detected suspected mass regions depicted on each image in the database using a single-image-based CAD. For each identified region (with detection score > or = 0.55), we then identified a matching strip of interest on the ipsilateral view based on the projected distance to the nipple along the centerline. By lowering CAD operating threshold inside the matching strip, we searched for a region located inside the strip and paired it with the original region. A multifeature-based artificial neural network scored the likelihood of the paired "matched" regions representing true-positive masses. All single (unmatched) regions except for those either with very high detection scores (> or = 0.85) or those located near the chest wall that cannot be matched on the other view were discarded. The original single-image-based CAD scheme detected 186 masses (74.4% case-based sensitivity) and 593 false-positive regions. Of the 186 identified masses, 91 were detected on two views (48.9%) and 95 were detected only on one view (51.1%). Of the false-positive detections, 54 were paired on the ipsilateral view inside the corresponding matching strips and the remaining 485 were not, which represented 539 case-based false-positive detections (0.3 per image). Applying the multiview-based CAD scheme, the same case-based sensitivity was maintained while cueing 169 of 186 masses (90.9%) on both views and at the same time reducing the case-based false-positive detection rate by 23.7% (from 539 to 411). The study demonstrated that the new multiview-based CAD scheme could substantially increase the number of masses being cued on two ipsilateral views while reducing the case-based false-positive detection rate.

0 0
  • [show abstract] [hide abstract]
    ABSTRACT: The objective of this study is to investigate the feasibility of predicting near-term risk of breast cancer development in women after a negative mammography screening examination. It is based on a statistical learning model that combines computerized image features related to bilateral mammographic tissue asymmetry and other clinical factors. A database of negative digital mammograms acquired from 994 women was retrospectively collected. In the next sequential screening examination (12 to 36 months later), 283 women were diagnosed positive for cancer, 349 were recalled for additional diagnostic workups and later proved to be benign, and 362 remain negative (not recalled). From an initial pool of 183 features, we applied a Sequential Forward Floating Selection feature selection method to search for effective features. Using 10 selected features, we developed and trained a support vector machine classification model to compute a cancer risk or probability score for each case. The area under the receiver operating characteristic curve and odds ratios (ORs) were used as the two performance assessment indices. The area under the receiver operating characteristic curve = 0.725 ± 0.018 was obtained for positive and negative/benign case classification. The ORs showed an increasing risk trend with increasing model-generated risk scores (from 1.00 to 12.34, between positive and negative/benign case groups). Regression analysis of ORs also indicated a significant increase trend in slope (P = .006). This study demonstrates that the risk scores computed by a new support vector machine model involving bilateral mammographic feature asymmetry have potential to assist the prediction of near-term risk of women for developing breast cancer.
    Academic radiology 12/2013; 20(12):1542-50. · 2.09 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Fluorescence in situ hybridization (FISH) tests provide promising molecular imaging biomarkers to more accurately and reliably detect and diagnose cancers and genetic disorders. Since current manual FISH signal analysis is low-efficient and inconsistent, which limits its clinical utility, developing automated FISH image scanning systems and computer-aided detection (CAD) schemes has been attracting research interests. To acquire high-resolution FISH images in a multi-spectral scanning mode, a huge amount of image data with the stack of the multiple three-dimensional (3-D) image slices is generated from a single specimen. Automated preprocessing these scanned images to eliminate the non-useful and redundant data is important to make the automated FISH tests acceptable in clinical applications. In this study, a dual-detector fluorescence image scanning system was applied to scan four specimen slides with FISH-probed chromosome X. A CAD scheme was developed to detect analyzable interphase cells and map the multiple imaging slices recorded FISH-probed signals into the 2-D projection images. CAD scheme was then applied to each projection image to detect analyzable interphase cells using an adaptive multiple-threshold algorithm, identify FISH-probed signals using a top-hat transform, and compute the ratios between the normal and abnormal cells. To assess CAD performance, the FISH-probed signals were also independently visually detected by an observer. The Kappa coefficients for agreement between CAD and observer ranged from 0.69 to 1.0 in detecting/counting FISH signal spots in four testing samples. The study demonstrated the feasibility of automated FISH signal analysis that applying a CAD scheme to the automated generated 2-D projection images.
    Analytical cellular pathology (Amsterdam) 08/2012; · 0.92 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Current computer-aided detection (CAD) schemes for detecting mammographic masses have several limitations including high correlation with radiologists' detection and cueing most subtle masses only on one view. To increase CAD sensitivity in cueing more subtle masses that are likely missed and/or overlooked by radiologists without increasing false-positive rates, we investigated a new case-dependent cueing method by combining the original CAD-generated detection scores with a computed bilateral mammographic density asymmetry index. Using the new method, we adaptively raise the CAD-generated scores of the regions detected on 'high-risk' cases to cue more subtle mass regions and reduce the CAD scores of the regions detected on 'low-risk' cases to discard more false-positive regions. A testing dataset involving 78 positive and 338 negative cases was used to test this adaptive cueing method. Each positive case involves two sequential examinations in which the mass was detected in 'current' examination and missed in 'prior' examination but detected in a retrospective review by radiologists. Applying to this dataset, a pre-optimized CAD scheme yielded 75% case-based and 55% region-based sensitivity on 'current' examinations at a false-positive rate of 0.25 per image. CAD sensitivity was reduced to 42% (case based) and 27% (region based) on 'prior' examinations. Using the new cueing method, case-based and region-based sensitivity could maximally increase 9% and 33% on the 'prior' examinations, respectively. The percentages of the masses cued on two views also increased from 27% to 65%. The study demonstrated that using this adaptive cueing method enabled us to help CAD cue more subtle cancers without increasing the false-positive cueing rate.
    Physics in Medicine and Biology 01/2012; 57(2):561-75. · 2.70 Impact Factor