Article

Three-dimensional conformal external beam radiotherapy (3D-CRT) for accelerated partial breast irradiation (APBI): what is the correct prescription dose?

Department of Radiation Oncology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298-0058, USA.
American journal of clinical oncology (Impact Factor: 2.21). 11/2006; 29(5):474-8. DOI: 10.1097/01.coc.0000225409.99284.f2
Source: PubMed

ABSTRACT This study is an evaluation of the biologic equivalence of the dose prescriptions for brachytherapy and 3-dimensional conformal external beam radiotherapy (3D-CRT) accelerated partial breast irradiation (APBI), using actual patient dose matrix data, and is based on the concept of equivalent uniform biologically effective dose (EUBED). This formalism allows a nonuniform dose distribution to be reduced to an equivalent uniform dose, while also accounting for fraction size.
Five computed tomography scans were selected from a group of patients treated with multicatheter interstitial APBI. Dose matrices for the brachytherapy plans were computed and analyzed with in-house software. For each patient, the EUBED for the brachytherapy dose matrix was generated based on calculations performed at the voxel-level. These EUBED values were then used to calculate the biologically equivalent fraction size for 3D-CRT (eud).
The mean equivalent fraction size (eudmean) and maximum equivalent fraction size (eudmax) were calculated for each patient using 100 different values of the alpha/beta ratio. The eudmean ranged from 3.67 to 3.69 Gy, while the eudmax ranged from 3.79 to 3.82 Gy. For all values of the alpha/beta ratio, the maximum fraction size calculated to deliver a biologically equivalent dose with 3D-CRT was 3.82 Gy, with an equivalent total prescription dose of 38.2 Gy.
Utilizing a wide range of established radiobiological parameters, this study suggests that the maximum fraction size needed to deliver a biologically equivalent dose using 3D-CRT is 3.82 Gy, supporting the continued use of 3.85Gy BID in the current national cooperative trial.

0 Bookmarks
 · 
41 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To report interim cosmetic results and toxicity from a prospective study evaluating accelerated partial-breast irradiation (APBI) administered using a highly conformal external beam approach. We enrolled breast cancer patients in an institutional review board-approved prospective study of APBI using beamlet intensity-modulated radiotherapy (IMRT) at deep-inspiration breath-hold. Patients received 38.5 Gy in 3.85 Gy fractions twice daily. Dosimetric parameters in patients who maintained acceptable cosmesis were compared with those in patients developing unacceptable cosmesis in follow-up, using t-tests. Thirty-four patients were enrolled; 2 were excluded from analysis because of fair baseline cosmesis. With a median follow-up of 2.5 years, new unacceptable cosmesis developed in 7 patients, leading to early study closure. We compared patients with new unacceptable cosmesis with those with consistently acceptable cosmesis. Retrospective analysis demonstrated that all but one plan adhered to the dosimetric requirements of the national APBI trial. The mean proportion of a whole-breast reference volume receiving 19.25 Gy (V50) was lower in patients with acceptable cosmesis than in those with unacceptable cosmesis (34.6% vs. 46.1%; p = 0.02). The mean percentage of this reference volume receiving 38.5 Gy (V100) was also lower in patients with acceptable cosmesis (15.5% vs. 23.0%; p = 0.02). The hypofractionated schedule and parameters commonly used for external beam APBI and prescribed by the ongoing national trial may be suboptimal, at least when highly conformal techniques such as IMRT with management of breathing motion are used. The V50 and V100 of the breast reference volume seem correlated with cosmetic outcome, and stricter limits may be appropriate in this setting.
    International journal of radiation oncology, biology, physics 05/2009; 76(1):71-8. · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accelerated partial breast irradiation (APBI) is being studied in a phase III randomized trial as an alternative to whole breast irradiation (WBI) for early stage breast cancer patients. There are three methods for APBI: multi-catheter brachytherapy (MCT), MammoSite brachytherapy (MST), or 3D conformal (3DCRT). There is a paucity of data comparing among methods. Using a linear-quadratic (LQ) model, we evaluated the anticipated efficacy among the APBI methods for equivalent uniform dose (EUD), Tumor Control Probability (TCP), and Normal Tissue Complication Probability (NTCP). Treatment plans from five patients treated by each APBI modality were retrospectively selected. Dose-volume-histograms (DVH) for planning target volume (PTV), breast, and lung were generated. The LQ parameters alpha=0.3Gy(-1) and alpha/beta=10Gy were used for calculations. The values of EUD, TCP, and NTCP were calculated based on DVHs. The average EUD (normalized to 3.4Gy BID) for the MCT, MST, and 3DCRT APBI was 35, 37.2, and 37.6Gy. When normalized to 2Gy fractionation these become, 42.2, 46.4, and 46.9Gy. Average TCP for MCT, MST, and 3DCRT PBI was 94.8%, 99.1%, and 99.2%. The NTCP values for breast and lung were low for all three methods. The EUD for PTV and TCP were most similar in MST and 3DCRT APBI and were lower in MCT APBI. This questions the equivalence of the three APBI modalities that are currently being evaluated in the NSABP-B39/RTOG 0413 protocol.
    Radiotherapy and Oncology 10/2007; 84(3):226-32. · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This prospective study examines the use of three-dimensional conformal external beam radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI). Four-year data on efficacy, cosmesis, and toxicity are presented. Patients with Stage O, I, or II breast cancer with lesions </=3 cm, negative margins, and negative nodes were eligible. The 3D-CRT delivered was 38.5 Gy in 3.85 Gy/fraction. Ipsilateral breast, ipsilateral nodal, contralateral breast, and distant failure (IBF, INF, CBF, DF) were estimated using the cumulative incidence method. Disease-free, overall, and cancer-specific survival (DFS, OS, CSS) were recorded. The National Cancer Institute Common Terminology Criteria for Adverse Events (version 3) toxicity scale was used to grade acute and late toxicities. Ninety-four patients are evaluable for efficacy. Median patient age was 62 years with the following characteristics: 68% tumor size <1 cm, 72% invasive ductal histology, 77% estrogen receptor (ER) (+), 88% postmenopausal; 88% no chemotherapy and 44% with no hormone therapy. Median follow-up was 4.2 years (range, 1.3-8.3). Four-year estimates of efficacy were IBF: 1.1% (one local recurrence); INF: 0%; CBF: 1.1%; DF: 3.9%; DFS: 95%; OS: 97%; and CSS: 99%. Four (4%) Grade 3 toxicities (one transient breast pain and three fibrosis) were observed. Cosmesis was rated good/excellent in 89% of patients at 4 years. Four-year efficacy, cosmesis, and toxicity using 3D-CRT to deliver APBI appear comparable to other experiences with similar follow-up. However, additional patients, further follow-up, and mature Phase III data are needed to evaluate thoroughly the extent of application, limitations, and complete value of this particular form of APBI.
    International journal of radiation oncology, biology, physics 06/2009; 76(4):991-7. · 4.59 Impact Factor