Article

Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions.

Technological Center for Electrospun Fibers and the Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phyathai Road, Pathumwan, Bangkok 10300, Thailand.
Biomacromolecules (Impact Factor: 5.37). 11/2006; 7(10):2710-4. DOI: 10.1021/bm060286l
Source: PubMed

ABSTRACT Further utilization of chitosan nanofibrous membranes that are electrospun from chitosan solutions in trifluoroacetic acid (TFA) with or without dichloromethane (DCM) as the modifying cosolvent is limited by the loss of the fibrous structure as soon as the membranes are in contact with neutral or weak basic aqueous solutions due to complete dissolution of the membranes. Dissolution occurs as a result of the high solubility in these aqueous media of -NH(3)(+)CF(3)COO(-) salt residues that are formed when chitosan is dissolved in TFA. Traditional neutralization with a NaOH aqueous solution only maintained partial fibrous structure. Much improvement in the neutralization method was achieved with the saturated Na(2)CO(3) aqueous solution with an excess amount of Na(2)CO(3)(s) in the solution. We showed that electrospun chitosan nanofibrous membranes, after neutralization in the Na(2)CO(3) aqueous solution, could maintain its fibrous structure even after continuous submersion in phosphate buffer saline (pH = 7.4) or distilled water for 12 weeks.

0 Bookmarks
 · 
133 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, carbon nanotubes (CNTs) were added into chitosan (CS) hydrogels in the form of chitosan modified CNTs (CS-CNTs) composites to prepare carbon nanotubes hydrogels (CNTs-GEL). The products, named CS-MWCNTs, were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. Swelling properties and effect of pH on controlled release performance of the two kinds of hydrogels, CNTs- GEL and pure chitosan hydrogels without CNTs (GEL), were investigated respectively. The results showed that CNTs-GEL possess better controlled release performance than GEL. The releasing equilibrium time of CNTs-GEL was longer than that of GEL in both pH = w7.4 and pH=1.2 conditions, although the release ratios of the model drug are similar in the same pH buffer solutions. It is found that release kinetics is better fitted Ritger-Peppas empirical model indicating a fick-diffusion process in pH = 1.2, while in pH = 7.4 it was non-fick diffusion involving surface diffusion and corrosion diffusion processes.
    Iranian journal of pharmaceutical research (IJPR) 01/2013; 12(4):581-6. · 0.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on accumulating evidence that the 3D topography and the chemical features of a growth surface influence neuronal differentiation, we combined these two features by evaluating the cytotoxicity, proliferation, and differentiation of the rat PC12 line and human neural stem cells (hNSCs) on chitosan (CS), cellulose acetate (CA), and polyethersulfone (PES)-derived electrospun nanofibers that had similar diameters, centered in the 200-500nm range. None of the nanofibrous materials were cytotoxic compared to 2D (e.g., flat surface) controls; however, proliferation generally was inhibited on the nanofibrous scaffolds although to a lesser extent on the polysaccharide-derived materials compared to PES. In an exception to the trend toward slower growth on the 3D substrates, hNSCs differentiated on the CS nanofibers proliferated faster than the 2D controls and both cell types showed enhanced indication of neuronal differentiation on the CS scaffolds. Together, these results demonstrate beneficial attributes of CS for neural tissue engineering when this polysaccharide is used in the context of the defined 3D topography found in electrospun nanofibers.
    Carbohydrate polymers. 01/2014; 99:483-90.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present review article is intended to direct attention to the technological advances made in the 2010-2014 quinquennium for the isolation and manufacture of nanofibrillar chitin and chitosan. Otherwise called nanocrystals or whiskers, n-chitin and n-chitosan are obtained either by mechanical chitin disassembly and fibrillation optionally assisted by sonication, or by e-spinning of solutions of polysaccharides often accompanied by poly(ethylene oxide) or poly(caprolactone). The biomedical areas where n-chitin may find applications include hemostasis and wound healing, regeneration of tissues such as joints and bones, cell culture, antimicrobial agents, and dermal protection. The biomedical applications of n-chitosan include epithelial tissue regeneration, bone and dental tissue regeneration, as well as protection against bacteria, fungi and viruses. It has been found that the nano size enhances the performances of chitins and chitosans in all cases considered, with no exceptions. Biotechnological approaches will boost the applications of the said safe, eco-friendly and benign nanomaterials not only in these fields, but also for biosensors and in targeted drug delivery areas.
    Marine Drugs 01/2014; 12(11):5468-5502. · 3.98 Impact Factor

Full-text (2 Sources)

Download
108 Downloads
Available from
Jun 3, 2014