Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features.

Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Biological Psychiatry (Impact Factor: 9.47). 02/2007; 61(2):198-209. DOI: 10.1016/j.biopsych.2006.05.048
Source: PubMed

ABSTRACT Major depressive disorder is characterized by increased and sustained emotional reactivity, which has been linked to sustained amygdala activity. It is also characterized by disruptions in executive control, linked to abnormal dorsolateral prefrontal cortex (DLPFC) function. These mechanisms have been hypothesized to interact in depression. This study explored relationships between amygdala and DLPFC activity during emotional and cognitive information processing in unipolar depression.
Twenty-seven unmedicated patients with DSM-IV unipolar major depressive disorder and 25 never-depressed healthy control subjects completed tasks requiring executive control (digit sorting) and emotional information processing (personal relevance rating of words) during event-related functional magnetic resonance imaging (fMRI) assessment.
Relative to control subjects, depressed subjects displayed sustained amygdala reactivity on the emotional tasks and decreased DLPFC activity on the digit-sorting task. Decreased relationships between the time-series of amygdala and DLPFC activity were observed within tasks in depression, but different depressed individuals showed each type of bias.
Depression is associated with increased limbic activity in response to emotional information processing and decreased DLPFC activity in response to cognitive tasks though these may reflect separate mechanisms. Depressed individuals also display decreased relationships between amygdala and DLPFC activity, potentially signifying decreased functional relationships among these structures.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidence of the brain network involved in cognitive dysfunction has been inconsistent for major depressive disorder (MDD), especially during early stage of MDD. This study seeks to examine abnormal cognition connectivity network (CCN) in MDD within the whole brain. Sixteen patients with MDD and 16 health controls were scanned during resting-state using 3.0 T functional magnetic resonance imaging (fMRI). All patients were first episode without any history of antidepressant treatment. Both the left and right dorsolateral prefrontal cortex (DLPFC) were used as individual seeds to identify CCN by the seed-target correlation analysis. Two sample t test was used to calculate between-group differences in CCN using fisher z-transformed correlation maps. The CCN was constructed by bilateral seed DLPFC in two groups separately. Depressed subjects exhibited significantly increased functional connectivity (FC) by left DLPFC in one cluster, overlapping middle frontal gyrus, BA7, BA43, precuneus, BA6, BA40, superior temporal gyrus, BA22, inferior parietal lobule, precentral gyrus, BA4 and cingulate gyrus in left cerebrum. Health controls did not show any cluster with significantly greater FC compared to depressed subjects in left DLPFC network. There was no significant difference of FC in right DLPFC network between depressed subjects and the health controls. There are differences in CCN during early stage of MDD, as identified by increased FCs among part of frontal gyrus, parietal cortex, cingulate cortex, and BA43, BA22, BA4 with left DLPFC. These brain areas might be involved in the underlying mechanisms of cognitive dysfunction in MDD.
    Psychiatry investigation 04/2015; 12(2):227-34. DOI:10.4306/pi.2015.12.2.227 · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to detect and respond to errors is critical to successful adaptation to a changing environment. The error-related negativity (ERN), an event-related potential (ERP) component, is a well-validated neural response to errors and reflects the error monitoring activity of the anterior cingulate cortex (ACC). Additionally, the ERN is implicated in several processes key to adaptive functioning. Abnormalities in error-related brain activity have been linked to multiple forms of psychopathology and individual differences. As such, the component is likely to be useful in NIMH's Research Domain Criteria (RDoC) initiative to establish biologically-meaningful dimensions of psychological dysfunction, and currently appears as a unit of measurement in three RDoC domains: Positive Valence Systems, Negative Valence Systems, and Cognitive Systems. In this review paper, we introduce the ERN and discuss evidence related to its psychometric properties, as well as important task differences. Following this, we discuss evidence linking the ERN to clinically diverse forms of psychopathology, as well as the implications of one unit of measurement appearing in multiple RDoC dimensions. And finally, we discuss important future directions, as well as research pathways by which the ERN might be leveraged to track the ways in which dysfunction of multiple neural systems interact to influence psychological well-being. Copyright © 2015. Published by Elsevier B.V.
    International journal of psychophysiology: official journal of the International Organization of Psychophysiology 03/2015; DOI:10.1016/j.ijpsycho.2015.02.029 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately one-third of patients with major depressive disorder (MDD) do not achieve remission after various treatment options and develop treatment resistant depression (TRD). So far, little is known about the pathophysiology of TRD. Studies in MDD patients showed aberrant functional connectivity (FC) of three "core" neurocognitive networks: the salience network (SN), cognitive control network (CCN), and default mode network (DMN). We used a cross-sectional design and performed resting-state FC MRI to assess connectivity of the SN, CCN, and both anterior and posterior DMN in 17 severe TRD, 18 non-TRD, and 18 healthy control (HC) subjects. Relative to both non-TRD and HC subjects, TRD patients showed decreased FC between the dorsolateral prefrontal cortex and angular gyrus, which suggests reduced FC between the CCN and DMN, and reduced FC between the medial prefrontal cortex and precuneus/cuneus, which suggests reduced FC between the anterior and posterior DMN. No significant differences in SN FC were observed. Our results suggest that TRD is characterized by a disturbance in neurocognitive networks relative to non-TRD and HC.
    Frontiers in Psychiatry 03/2015; 6:28. DOI:10.3389/fpsyt.2015.00028

Full-text (2 Sources)

Available from
May 22, 2014