Article

Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice.

Department of Anatomy, University of Vermont College of Medicine, Burlington, 05405, USA.
Journal of Neurochemistry (Impact Factor: 4.24). 11/2006; 99(2):499-513. DOI: 10.1111/j.1471-4159.2006.04112.x
Source: PubMed

ABSTRACT Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are closely related neurotrophic peptides of the secretin/glucagon family. The two peptides are derived from a common ancestral gene and share many functional attributes in neuronal development/regeneration which occur not only from overlapping receptor subtype signaling but also through common mechanisms regulating their expression. Although PACAP or VIP null mice have been generated for study, it is unclear whether the expression of the complementary peptide or their receptor systems are altered in a compensatory manner during nervous system development. By radioimmunoassay and quantitative PCR measurements, we first show that PACAP and VIP have very different temporal patterns of expression in developing postnatal mouse brain. In wild-type animals, PACAP transcript and peptide levels increased rapidly 2- and 5-fold, respectively, within 1 week of age. These levels at 1 week of age were maintained through adulthood. VIP transcript and peptide levels, by contrast, increased 25- and 50-fold, respectively, over a later time course. In parallel studies of development, there were no apparent compensatory increases in brain VIP expression in the PACAP knockout animals, PACAP expression in the VIP-deficient animals, or receptor mRNA levels in either genotype. To the contrary, there was evidence for developmental delays in the expression of peptide and receptor transcripts in the knockout animals. A series of behavioral and neurological tests demonstrated differences between the knockout genotypes, revealing some functional distinctions between the two genes. These results suggest that the PACAP and VIP have evolved to possess distinct biological activities and intimate that the respective knockout phenotypes represent deficits unmitigated by the actions of the complementary related peptide.

0 Bookmarks
 · 
163 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders.
    Neuropharmacology 07/2014; 86. DOI:10.1016/j.neuropharm.2014.06.022 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic or repeated stressor exposure can induce a number of maladaptive behavioral and physiological consequences and among limbic structures, the bed nucleus of the stria terminalis (BNST) has been implicated in the integration and interpretation of stress responses. Previous work has demonstrated that chronic variate stress (CVS) exposure in rodents increases BNST pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) and PAC1 receptor (Adcyap1r1) transcript expression, and that acute BNST PACAP injections can stimulate anxiety-like behavior. Here we show that chronic stress increases PACAP expression selectively in the oval nucleus of the dorsolateral BNST in patterns distinct from those for corticotropin releasing hormone (CRH). Among receptor subtypes, BNST PACAP signaling through PAC1 receptors not only heightened anxiety responses as measured by different behavioral parameters but also induced anorexic-like behavior to mimic the consequences of stress. Conversely, chronic inhibition of BNST PACAP signaling by continuous infusion with the PAC1 receptor antagonist PACAP(6–38) during the week of CVS attenuated these stress-induced behavioral responses and changes in weight gain. BNST PACAP signaling stimulated the hypothalamic–pituitary–adrenal (HPA) axis and heightened corticosterone release; further, BNST PACAP(6–38) administration blocked corticosterone release in a sensitized stress model. In aggregate with recent associations of PACAP/PAC1 receptor dysregulation with altered stress responses including post-traumatic stress disorder, these data suggest that BNST PACAP/PAC1 receptor signaling mechanisms may coordinate the behavioral and endocrine consequences of stress.
    Psychoneuroendocrinology 09/2014; 47:151–165. DOI:10.1016/j.psyneuen.2014.05.014 · 5.59 Impact Factor

Full-text (2 Sources)

Download
9 Downloads
Available from
Sep 15, 2014