Article

Nitric oxide production in the basal forebrain is required for recovery sleep.

Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland.
Journal of Neurochemistry (Impact Factor: 4.24). 11/2006; 99(2):483-98. DOI: 10.1111/j.1471-4159.2006.04077.x
Source: PubMed

ABSTRACT Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. Here, we assessed the role of the intercellular gaseous signaling agent NO in sleep homeostasis. We measured the concentration of nitrite and nitrate, indicative of NO production, in the basal forebrain (BF) of rats during sleep deprivation (SD), and found the level increased by 100 +/- 51%. To test whether an increase in NO production might play a causal role in recovery sleep, we administered compounds into the BF that increase or decrease concentrations of NO. Infusion of either a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, or a NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), completely abolished non-rapid eye movement (NREM) recovery sleep. Infusion of a NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2diolate (DETA/NO), produced an increase in NREM that closely resembled NREM recovery after prolonged wakefulness. The effects of inhibition of NO synthesis and the pharmacological induction of sleep were effective only in the BF area. Indicators of energy metabolism, adenosine, lactate and pyruvate increased during prolonged wakefulness and DETA/NO infusion, whereas L-NAME infusion during SD prevented the increases. We conclude that an increase in NO production in the BF is a causal event in the induction of recovery sleep.

0 Bookmarks
 · 
59 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) has been implicated in the regulation of sleep. The perifornical-lateral hypothalamic area (PF-LHA) is a key wake-promoting region and contains neurons that are active during behavioral or cortical activation. Recently, we found higher levels of NO metabolites (NOx), an indirect measure of NO levels, in the PF-LHA during prolonged-waking (SD). However, NO is highly reactive and diffuses rapidly and the NOx assay is not sensitive enough to detect rapid-changes in NO levels across spontaneous sleep-waking states. We used a novel Nafion®-modified Platinum (NF-PT) electrode for real-time detection of NO levels in the PF-LHA across sleep-wake cycles, dark-light phases, and during SD. Sprague-Dawley male rats were surgically prepared for chronic sleep-wake recording and implantation of NF-PT electrode into the PF-LHA. EEG, EMG, and electrochemical current generated by NF-PT electrode were continuously acquired for 5-7 days including one day with 3h of SD. In the PF-LHA, NO levels exhibited a waking>REM>nonREM sleep pattern (0.56±0.03μM >0.47±0.02μM >0.42±0.02μM; p<0.01). NO levels were also higher during the dark- as compared to the light-phase (0.53±0.03μM vs. 0.44±0.02μM; p<0.01). NO levels increased during 3h of SD as compared to undisturbed control (0.58±0.04μM vs. 0.47±0.01μM; p<0.05). The findings indicate that in the PF-LHA, NO is produced during behavioral or cortical activation. Since elevated levels of NO inhibits most of the PF-LHA neurons that are active during cortical activation, these findings support a hypothesis that NO produced in conjunction with the activation of PF-LHA neurons during waking/SD, inhibits the same neuronal population to promote sleep.
    Neuroscience 09/2013; DOI:10.1016/j.neuroscience.2013.09.022 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex , lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low-theta power (5-7 Hz), but not high-theta (7-9 Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx ]ex and [AD]ex . Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx ]ex , [AD]ex and low-theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex . Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low-theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP.
    European Journal of Neuroscience 11/2014; 41(2). DOI:10.1111/ejn.12766 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the neural circuitry underlying homeostatic sleep regulation is little understood, cortical neurons immunoreactive for neuronal nitric oxide synthase (nNOS) and the neurokinin-1 receptor (NK1) have been proposed to be involved in this physiological process. By systematically manipulating the durations of sleep deprivation and subsequent recovery sleep, we show that activation of cortical nNOS/NK1 neurons is directly related to non-rapid eye movement (NREM) sleep time, NREM bout duration, and EEG δ power during NREM sleep, an index of preexisting homeostatic sleep drive. Conversely, nNOS knockout mice show reduced NREM sleep time, shorter NREM bouts, and decreased power in the low δ range during NREM sleep, despite constitutively elevated sleep drive. Cortical NK1 neurons are still activated in response to sleep deprivation in these mice but, in the absence of nNOS, they are unable to up-regulate NREM δ power appropriately. These findings support the hypothesis that cortical nNOS/NK1 neurons translate homeostatic sleep drive into up-regulation of NREM δ power through an NO-dependent mechanism.
    Proceedings of the National Academy of Sciences 11/2013; DOI:10.1073/pnas.1314762110 · 9.81 Impact Factor

Full-text (2 Sources)

Download
1 Download
Available from
Dec 26, 2014