Article

Physiological Evidence for the Involvement of Peptide YY in the Regulation of Energy Homeostasis in Humans*

Obesity and Diabetes Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA.
Obesity (Impact Factor: 4.39). 10/2006; 14(9):1562-70. DOI: 10.1038/oby.2006.180
Source: PubMed

ABSTRACT To explore the potential role of the endogenous peptide YY (PYY) in the long-term regulation of body weight and energy homeostasis.
Fasting and postprandial plasma PYY concentrations were measured after an overnight fast and 30 to 180 minutes after a standardized meal in 29 (21 men/8 women) non-diabetic subjects, 16 of whom had a follow-up visit 10.8 +/- 1.4 months later. Ratings of hunger and satiety were collected using visual analog scales. Resting metabolic rate (RMR) (15-hour RMR) and respiratory quotient (RQ) were assessed using a respiratory chamber.
Fasting PYY concentrations were negatively correlated with various markers of adiposity and negatively associated with 15-hour RMR (r = -0.46, p = 0.01). Postprandial changes in PYY (area under the curve) were positively associated with postprandial changes in ratings of satiety (r = 0.47, p = 0.01). The maximal PYY concentrations achieved after the meal (peak PYY) were negatively associated with 24-hour RQ (r = -0.41, p = 0.03). Prospectively, the peak PYY concentrations were negatively associated with changes in body weight (r = -0.58, p = 0.01).
Our data indicate that the endogenous PYY may be involved in the long-term regulation of body weight. It seems that this long-term effect was not exclusively driven by the modulation of food intake but also by the control of energy expenditure and lipid metabolism.

0 Followers
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gastrointestinal hormone peptide tyrosine tyrosine 3-36 (PYY3-36) has attained broad recognition with respect to its involvement in energy homeostasis and the control of food intake. It is mainly secreted by distal intestinal enteroendocrine L-cells in response to eating and exerts both neurally mediated paracrine and endocrine effects on various target organs. In addition to its gastrointestinal effects, PYY3-36 has long been known to inhibit food intake. Recent closer examination of the effects of PYY3-36 revealed that this gut-derived peptide also influences a wide spectrum of behavioral and cognitive functions that are pivotal for basic processes of perception and judgment, including central information processing, salience learning, working memory, and behavioral responding to novelty. Here, we review the effects of PYY3-36 that go beyond food intake and provide a conceptual framework suggesting that several apparently unrelated behavioral actions of PYY3-36 may actually reflect different manifestations of modulating the central dopamine system. Copyright © 2014. Published by Elsevier Inc.
    Frontiers in Neuroendocrinology 12/2014; DOI:10.1016/j.yfrne.2014.12.003 · 7.58 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal nutrient infusions result in variable decreases in food intake and body weight based on the nutrient type and the specific intestinal infusion site. We previously found that intrajejunal infusions of a fatty acid and glucose, but not casein hydrolysate, decreases food intake and body weight in lean chow-fed laboratory rats. To test whether obese, high fat-fed animals would show similar decreases in food intake and body weight in response to intrajejunal infusions of the same nutrients, equal kilocalorie loads of these nutrients (11.4 kcal) or vehicle were infused into the jejunum of obese, high fat-fed male Sprague-Dawley rats over 7 h/day for 5 consecutive days. Food intake was continuously monitored, and body weight was measured daily. After the infusion on the final day, rats were killed and plasma was collected. Similar to lean chow-fed rats, intrajejunal infusions of linoleic acid (LA) and glucose (Glu), but not casein hydrolysate (Cas), suppressed food intake with no compensatory increase in food intake after the infusion period. In contrast to lean chow-fed rats, only the LA, and not the Glu or Cas, produced decreases in body weight in the obese high fat-fed rat. There also were no differences in plasma glucagon-like peptide-1 levels in any of the nutrient infusion groups compared with saline infusion. These results suggest that there is a differential response to the same nutrients in lean vs. obese animals.
    AJP Regulatory Integrative and Comparative Physiology 03/2014; 306(6):R420-R428. DOI:10.1152/ajpregu.00410.2013 · 3.53 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Oct 14, 2014