Article

Neural tube defects and folate pathway genes: family-based association tests of gene-gene and gene-environment interactions.

Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
Environmental Health Perspectives (Impact Factor: 7.03). 11/2006; 114(10):1547-52. DOI: 10.1289/ehp.9166
Source: PubMed

ABSTRACT Folate metabolism pathway genes have been examined for association with neural tube defects (NTDs) because folic acid supplementation reduces the risk of this debilitating birth defect. Most studies addressed these genes individually, often with different populations providing conflicting results.
Our study evaluates several folate pathway genes for association with human NTDs, incorporating an environmental cofactor: maternal folate supplementation.
In 304 Caucasian American NTD families with myelomeningocele or anencephaly, we examined 28 polymorphisms in 11 genes: folate receptor 1, folate receptor 2, solute carrier family 19 member 1, transcobalamin II, methylenetetrahydrofolate dehydrogenase 1, serine hydroxymethyl-transferase 1, 5,10-methylenetetrahydrofolate reductase (MTHFR), 5-methyltetrahydrofolate-homo-cysteine methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase, betaine-homocysteine methyltransferase (BHMT), and cystathionine-beta-synthase.
Only single nucleotide polymorphisms (SNPs) in BHMT were significantly associated in the overall data set; this significance was strongest when mothers took folate-containing nutritional supplements before conception. The BHMT SNP rs3733890 was more significant when the data were stratified by preferential transmission of the MTHFR rs1801133 thermolabile T allele from parent to offspring. Other SNPs in folate pathway genes were marginally significant in some analyses when stratified by maternal supplementation, MTHFR, or BHMT allele transmission.
BHMT rs3733890 is significantly associated in our data set, whereas MTHFR rs1801133 is not a major risk factor. Further investigation of folate and methionine cycle genes will require extensive SNP genotyping and/or resequencing to identify novel variants, inclusion of environmental factors, and investigation of gene-gene interactions in large data sets.

0 Bookmarks
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.
    PLoS ONE 12/2014; 9(12):e114903. DOI:10.1371/journal.pone.0114903 · 3.53 Impact Factor
  • Frontiers of Biology 06/2014; DOI:10.1007/s11515-014-1320-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background:Neural tube defects (NTDs) including spina bifida and anencephaly are the second most common birth defects with 2.8 per 1000 births in northern Iran.Objectives:This study was conducted to determine the risk factors of neural tube defects in Gorgan, north of Iran.Patients and Methods:This hospital-based, case-control study was carried out on all NTD-affected pregnancies (n = 59) during February 2007 - August 2010, and 160 healthy pregnancies were selected via convenient sampling method in three hospitals in Gorgan, north of Iran. Risk factors including maternal body mass index (BMI), season of birth, gender of the newborn, mother’s age, ethnicity, consanguineous marriage, folic acid consumption, nutrition, habitat, and education, were assessed through interviews with mothers. Univariate and multivariate logistic regression analyses were used to estimate the risks by odds ratios (ORs) and 95% confidence intervals.Results:The multivariate analysis showed that maternal BMI (normal/underweight OR: 0.23, overweight/underweight OR: 0.15, obese/underweight OR: 0.13) and maternal ethnicity (Fars/Sistani OR: 3.49) and maternal nutrition (good/poor OR: 0.46) were significantly correlated with NTDs in the newborns.Conclusions:This study showed that maternal ethnicity, insufficient nutrition, and BMI, were the main risk factors of NTDs in northern Iran.
    06/2014; 16(6):e7940. DOI:10.5812/ircmj.7940
    This article is viewable in ResearchGate's enriched format

Full-text (4 Sources)

Download
48 Downloads
Available from
May 28, 2014