Article

Phosphoinositides in cell regulation and membrane dynamics.

Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032, USA.
Nature (Impact Factor: 42.35). 11/2006; 443(7112):651-7. DOI: 10.1038/nature05185
Source: PubMed

ABSTRACT Inositol phospholipids have long been known to have an important regulatory role in cell physiology. The repertoire of cellular processes known to be directly or indirectly controlled by this class of lipids has now dramatically expanded. Through interactions mediated by their headgroups, which can be reversibly phosphorylated to generate seven species, phosphoinositides play a fundamental part in controlling membrane-cytosol interfaces. These lipids mediate acute responses, but also act as constitutive signals that help define organelle identity. Their functions, besides classical signal transduction at the cell surface, include regulation of membrane traffic, the cytoskeleton, nuclear events and the permeability and transport functions of membranes.

2 Followers
 · 
179 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons.
    Scientific Reports 03/2015; 5:8724. DOI:10.1038/srep08724 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phos-phoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.
    Nature Communications 01/2015; 6:5984. · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The polyvalent acidic lipid phosphatidylinositol, 4,5-bisphosphate (PIP2) is important for many cellular functions. It has been suggested that different pools of PIP2 exist in the cytoplasmic leaflet of the plasma membrane, and that such pooling could play a role in the regulation of PIP2. The mechanism of fencing, however, is not understood. This study presents the results of Langevin dynamics simulations of PIP2 to elucidate some of the molecular level considerations that must be applied to models for fencing. For each simulation, a pool of PIP2 (modeled as charged spheres) was placed in containments with boundaries modeled as a single row of rods (steric or electrostatic) or rigid protein filaments. It is shown that even a small gap (20 Å, which is 1.85 times larger than the diameter of a PIP2 sphere) leads to poor steric blocking, and that electrostatic blockage is only effective at very high charge density. Filaments of human septin, yeast septin, and actin also failed to provide adequate blockage when placed on the membrane surface. The two septins do provide high blockage consistent with experiment and with phenomenological considerations of permeability when they are buried 9 Å and 12 Å below the membrane surface, respectively. In contrast, burial does not improve blockage by the "arch-shaped" actin filaments. Free energy estimates using implicit membrane-solvent models indicate that burial of the septins to about 10 Å can be achieved without penetration of charged residues into the hydrophobic region of the membrane. These results imply that a functioning fence assembled from protein filaments must either be buried well below the membrane surface, have more than a single row, or contain additional components that fill small gaps in the filaments.
    BMC Biophysics 11/2014; 7:13. DOI:10.1186/s13628-014-0013-3 · 2.18 Impact Factor

Preview

Download
16 Downloads
Available from