Di PG, De CP.. Phosphoinositides in cell regulation and membrane dynamics. Nature 443: 651-657

Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York 10032, USA.
Nature (Impact Factor: 41.46). 11/2006; 443(7112):651-7. DOI: 10.1038/nature05185
Source: PubMed


Inositol phospholipids have long been known to have an important regulatory role in cell physiology. The repertoire of cellular processes known to be directly or indirectly controlled by this class of lipids has now dramatically expanded. Through interactions mediated by their headgroups, which can be reversibly phosphorylated to generate seven species, phosphoinositides play a fundamental part in controlling membrane-cytosol interfaces. These lipids mediate acute responses, but also act as constitutive signals that help define organelle identity. Their functions, besides classical signal transduction at the cell surface, include regulation of membrane traffic, the cytoskeleton, nuclear events and the permeability and transport functions of membranes.

Download full-text


Available from: Pietro De Camilli, Aug 30, 2015
73 Reads
  • Source
    • "Originally discovered in 1999 (Chen et al., 1999), these proteins were not recognized as electrically-controlled enzymes until 2005 (Murata et al., 2005). They constitute the first, and so far the only, example of an enzyme linking electrical signals at the plasma membrane to the catalysis of PIPs (Murata et al., 2005), a ubiquitous family of intracellular signaling molecules (Di Paolo and De Camilli, 2006; Balla, 2013). Before the discovery of VSP, there were no known direct links between the two. "
    Frontiers in Pharmacology 07/2015; 6:142. DOI:10.3389/fphar.2015.00142 · 3.80 Impact Factor
  • Source
    • "In addition, these molecules regulate homeostasis of their characteristic vesicles (Di Paolo and De Camilli, 2006). PtdIns3P is important at ASFV entry and also, the biphosphate PtdIns(3,5)P 2 , is an important host component for initial infection stages at a postbinding step, after virus uncoating and exit from the endosomal pathway, namely, at the start of ASFV replication (Cuesta-Geijo et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Viruses are strict intracellular pathogens that require the cellular environment to complete a successful infection. Among them, African swine fever virus (ASFV) is an evolutionary ancient DNA virus, endemic in Africa, which is nowadays causing an emergent disease in Europe with a potential high economic impact in the pig industry. It is well known that host-cell components are critical crossroads mapping the virus path for a productive infection, some of them at the endocytic pathway. Considering that ASFV infectious cycle strongly relies in several factors from the host cell, the study of virus-host interactions remains crucial as they will reveal the obstacles, routes and tracks, hints and the target waypoint in the virus journey to destination. Copyright © 2015. Published by Elsevier B.V.
    Virus Research 06/2015; DOI:10.1016/j.virusres.2015.05.026 · 2.32 Impact Factor
    • "Lipids such as phosphatidylethanolamine (PtdEtn), phosphatic acid, diacylglycerol (DAG) or cardiolipin, which have a smaller polar headgroup than that of PtdCho, have a roughly conical shape and thus impose a negative curvature, where a monolayer with such lipids bends in such a fashion that the headgroups come closer together. Conversely, a large headgroup to acyl chain ratio, such as in lysophosphatidylcholine (LPC) or the large headgroups in phosphatidylinositol phosphates (PtdIns) confers an inverted conical shape to the lipids, thereby favoring the bending of the membrane into a positive curvature, bending the monolayer away from the headgroups (reviewed in Chernomordik and Kozlov, 2003; Di Paolo and De Camilli, 2006; Zimmerberg and Kozlov, 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes. © 2015. Published by The Company of Biologists Ltd.
    Journal of Cell Science 03/2015; 128(6):1065-1070. DOI:10.1242/jcs.114454 · 5.43 Impact Factor
Show more