Article

Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins.

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
Nucleic Acids Research (Impact Factor: 8.81). 02/2006; 34(19):5683-94. DOI: 10.1093/nar/gkl721
Source: PubMed

ABSTRACT The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable.

1 Bookmark
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background All lentiviruses except equine infectious anemia virus (EIVA) antagonize antiviral family APOBEC3 (A3) proteins of the host through viral Vif proteins. The mechanism by which Vif of human, simian or feline immunodeficiency viruses (HIV/SIV/FIV) suppresses the corresponding host A3s has been studied extensively.ResultsHere, we determined that bovine immunodeficiency virus (BIV) and maedi-visna virus (MVV) Vif proteins utilize the Cullin (Cul)-ElonginB (EloB)-ElonginC (EloC) complex (BIV Vif recruits Cul2, while MVV Vif recruits Cul5) to degrade Bos taurus (bt)A3Z2-Z3 and Ovis aries (oa)A3Z2-Z3, respectively, via a proteasome-dependent but a CBF-ß-independent pathway. Mutation of the BC box in BIV and MVV Vif, C-terminal hydrophilic replacement of btEloC and oaEloC and dominant-negative mutants of btCul2 and oaCul5 could disrupt the activity of BIV and MVV Vif, respectively. While the membrane-permeable zinc chelator TPEN could block BIV Vif-mediated degradation of btA3Z2-Z3, it had minimal effects on oaA3Z2-Z3 degradation induced by MVV Vif, indicating that Zn is important for the activity of BIV Vif but not MVV Vif. Furthermore, we identified a previously unreported zinc binding loop [C-x1-C-x1-H-x19-C] in the BIV Vif upstream BC box which is critical for its degradation activity.ConclusionsA novel zinc binding loop was identified in the BIV Vif protein that is important for the E3 ubiquination activity, suggesting that the degradation of btA3Z2-Z3 by BIV and that of oaA3Z2-Z3 by MVV Vif may need host factors other than CBF-ß.
    Retrovirology 09/2014; 11(1):77. · 4.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 (APOBEC3) genes are able to inhibit the replication of a wide range of exogenous retroviruses, as well as endogenous retroviruses and retrotransposons. Three APOBEC3 genes, named APOBEC3Z1, APOBEC3Z2 and APOBEC3Z3, have been described in sheep. In this work the three genes have been screened in order to identify polymorphisms. No polymorphism was detected for the A3Z2 and A3Z3 genes but 16 SNPs and a 3-bp deletion were found in the A3Z1 gene. A thermoestability prediction analysis was applied to the detected amino acidic SNPs by three different programs. This analysis revealed a number of polymorphisms that could affect the protein stability. The SNPs of the 3'UTR were tested to detect alterations on the predicted microRNA target sites. Two new microRNA target sites were discovered for one of the alleles. Two SNPs were selected for association studies in relation with the retroviral disease Visna/Maedi in Latxa and Assaf sheep breeds. Although association analyses resulted unconclusive, probably due to the unsuitability of the SNP allele frequency distribution of the selected polymorphisms in the analyzed breeds, these genes remain good candidates for association studies. Copyright © 2014 Elsevier B.V. All rights reserved.
    Veterinary Immunology and Immunopathology 11/2014; 163(3-4). · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The APOBEC3 restriction factors are a family of deoxycytidine deaminases that are able to suppress replication of viruses with a single-stranded DNA intermediate by inducing mutagenesis and functional inactivation of the virus. Of the seven human APOBEC3 enzymes, only APOBEC3-D, -F, -G, and -H appear relevant to restriction of HIV-1 in CD4+ T cells and will be the focus of this review. The restriction of HIV-1 occurs most potently in the absence of HIV-1 Vif that induces polyubiquitination and degradation of APOBEC3 enzymes through the proteasome pathway. To restrict HIV-1, APOBEC3 enzymes must be encapsidated into budding virions. Upon infection of the target cell during reverse transcription of the HIV-1 RNA into (-)DNA, APOBEC3 enzymes deaminate cytosines to form uracils in single-stranded (-)DNA regions. Upon replication of the (-)DNA to (+)DNA, the HIV-1 reverse transcriptase incorporates adenines opposite to the uracils thereby inducing C/G to T/A mutations that can functionally inactivate HIV-1. APOBEC3G is the most studied APOBEC3 enzyme and it is known that Vif attempts to thwart APOBEC3 function not only by inducing its proteasomal degradation but also by several degradation-independent mechanisms, such as inhibiting APOBEC3G virion encapsidation, mRNA translation, and for those APOBEC3G molecules that still become virion encapsidated, Vif can inhibit APOBEC3G mutagenic activity. Although most Vif variants can induce efficient degradation of APOBEC3-D, -F, and -G, there appears to be differential sensitivity to Vif-mediated degradation for APOBEC3H. This review examines APOBEC3-mediated HIV restriction mechanisms, how Vif acts as a substrate receptor for a Cullin5 ubiquitin ligase complex to induce degradation of APOBEC3s, and the determinants and functional consequences of the APOBEC3 and Vif interaction from a biological and biochemical perspective.
    Frontiers in Microbiology 08/2014; 5:450. · 3.94 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
Jun 2, 2014