Article

MIMOX: a web tool for phage display based epitope mapping

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
BMC Bioinformatics (Impact Factor: 2.67). 02/2006; 7:451. DOI: 10.1186/1471-2105-7-451
Source: PubMed

ABSTRACT Phage display is widely used in basic research such as the exploration of protein-protein interaction sites and networks, and applied research such as the development of new drugs, vaccines, and diagnostics. It has also become a promising method for epitope mapping. Research on new algorithms that assist and automate phage display based epitope mapping has attracted many groups. Most of the existing tools have not been implemented as an online service until now however, making it less convenient for the community to access, utilize, and evaluate them.
We present MIMOX, a free web tool that helps to map the native epitope of an antibody based on one or more user supplied mimotopes and the antigen structure. MIMOX was coded in Perl using modules from the Bioperl project. It has two sections. In the first section, MIMOX provides a simple interface for ClustalW to align a set of mimotopes. It also provides a simple statistical method to derive the consensus sequence and embeds JalView as a Java applet to view and manage the alignment. In the second section, MIMOX can map a single mimotope or a consensus sequence of a set of mimotopes, on to the corresponding antigen structure and search for all of the clusters of residues that could represent the native epitope. NACCESS is used to evaluate the surface accessibility of the candidate clusters; and Jmol is embedded to view them interactively in their 3D context. Initial case studies show that MIMOX can reproduce mappings from existing tools such as FINDMAP and 3DEX, as well as providing novel, rational results.
A web-based tool called MIMOX has been developed for phage display based epitope mapping. As a publicly available online service in this area, it is convenient for the community to access, utilize, and evaluate, complementing other existing programs. MIMOX is freely available at http://web.kuicr.kyoto-u.ac.jp/~hjian/mimox.

0 Followers
 · 
184 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human immune system includes variety of different cells and molecules correlating with other body systems. These instances complicate the analysis of the system; particularly in postgenomic era by introducing more amount of data, the complexity is increased and necessity of using computational approaches to process and interpret them is more tangible.Immunoinformatics as a subset of bioinformatics is a new approach with variety of tools and databases that facilitate analysis of enormous amount of immunologic data obtained from experimental researches. In addition to directing the insight regarding experiment selections, it helps new thesis design which was not feasible with conventional methods due to the complexity of data. Considering this features immunoinformatics appears to be one of the fields that accelerate the immunological research progression.In this study we discuss advances in genomics and vaccine design and their relevance to the development of effective vaccines furthermore several division of this field and available tools in each item are introduced.
    Acta Microbiologica et Immunologica Hungarica 09/2014; 61(3):285-307. DOI:10.1556/AMicr.61.2014.3.4 · 0.78 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of epitopes which invokes strong humoral responses is an essential issue in the field of immunology. Various computational methods that have been developed based on the antigen structures and the mimotopes these years narrow the search for experimental validation. These methods can be divided into two categories: antigen structure-based methods and mimotope-based methods. Though new methods of the two kinds have been proposed in these years, they cannot maintain a high degree of satisfaction in various circumstances. In this paper, we proposed a new conformational B-cell epitope prediction method based on antigen preprocessing and mimotopes analysis. The method classifies the antigen surface residues into "epitopes" and "nonepitopes" by six epitope propensity scales, removing the "nonepitopes" and using the preprocessed antigen for epitope prediction based on mimotope sequences. The proposed method gives out the mean F score of 0.42 on the testing dataset. When compared with other publicly available servers by using the testing dataset, the new method yields better performance. The results demonstrate the proposed method is competent for the conformational B-cell epitope prediction.
    BioMed Research International 01/2015; 2015:257030. DOI:10.1155/2015/257030 · 2.71 Impact Factor

Preview

Download
2 Downloads
Available from