Article

Genetic and molecular biological analysis of protein-protein interactions in coronavirus assembly.

New York State Department of Health, Albany, New York, USA.
Advances in experimental medicine and biology (Impact Factor: 1.83). 02/2006; 581:163-73. DOI: 10.1007/978-0-387-33012-9_29
Source: PubMed

ABSTRACT Virions of coronaviruses (CoVs) are pleiomorphic, with a roughly spherical structure brought about by cooperation among a relatively small set of structural proteins and a membranous envelope acquired from the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) (Fig. 1). Three integral membrane proteins reside in the envelope. The most salient of these is the spike glycoprotein (S), which mediates receptor attachment and fusion of the viral and host cell membranes. The membrane protein (M) is the most abundant virion component and gives the envelope its shape. The third constituent is the envelope protein (E), which, although minor in both size and quantity, plays a decisive role is envelope formation. In some group 2 CoVs, an additional protein, the hemagglutinin-esterase (HE), appears in the viral envelope. Finally, interior to the envelope, monomers of the nucleocapsid protein (N) wrap the genome into a helical structure.

0 Bookmarks
 · 
42 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.
    Journal of Biological Chemistry 09/2009; 284(47):32725-34. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronavirus spike (S) protein assembles into virions via its carboxy-terminus, which is composed of a transmembrane domain and an endodomain. Here, the carboxy-terminal charge-rich motif in the endodomain was verified to be critical for the specificity of S assembly into mouse hepatitis virus (MHV). Recombinant MHVs exhibited a range of abilities to accommodate the homologous S endodomains from the betacoronaviruses bovine coronavirus and human SARS-associated coronavirus, the alphacoronavirus porcine transmissible gastroenteritis virus (TGEV), and the gammacoronavirus avian infectious bronchitis virus respectively. Interestingly, in TGEV endodomain chimeras the reverting mutations resulted in stronger S incorporation into virions, and a net gain of negatively charged residues in the charge-rich motif accounted for the improvement. Additionally, MHV S assembly could also be rescued by the acidic carboxy-terminal domain of the nucleocapsid protein. These results indicate an important role for negatively charged endodomain residues in the incorporation of MHV S protein into assembled virions.
    Virology 04/2013; · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The establishment of persistent viral infection is often associated with the selection of one or more mutant viruses. For example, it has been found that an intraleader open reading frame (ORF) in genomic and subgenomic mRNA (sgmRNA) molecules is selected during bovine coronavirus (BCoV) persistence which leads to translation attenuation of the downstream ORF. Here, we report the unexpected identification of leaderless genomes, in addition to leader-containing genomes, in a cell culture persistently infected with BCoV. The discovery was made by using a head-to-tail ligation method that examines genomic 5'-terminal sequences at different times postinfection. Functional analyses of the leaderless genomic RNA in a BCoV defective interfering (DI) RNA revealed that (1) the leaderless genome was able to serve as a template for the synthesis of negative-strand genome, although it cannot perform replicative positive-strand genomic RNA synthesis, and (2) the leaderless genome retained its function in translation and transcription, although the efficiency of these processes was impaired. Therefore, this previously unidentified leaderless genome is associated with the attenuation of genome expression. Whether the leaderless genome contributes to the establishment of persistent infection remains to be determined.
    PLoS ONE 01/2013; 8(12):e82176. · 3.53 Impact Factor

Full-text

View
0 Downloads
Available from
Sep 12, 2014