Genetic and molecular biological analysis of protein-protein interactions in coronavirus assembly.

New York State Department of Health, Albany, New York, USA.
Advances in experimental medicine and biology (Impact Factor: 1.83). 02/2006; 581:163-73. DOI: 10.1007/978-0-387-33012-9_29
Source: PubMed

ABSTRACT Virions of coronaviruses (CoVs) are pleiomorphic, with a roughly spherical structure brought about by cooperation among a relatively small set of structural proteins and a membranous envelope acquired from the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) (Fig. 1). Three integral membrane proteins reside in the envelope. The most salient of these is the spike glycoprotein (S), which mediates receptor attachment and fusion of the viral and host cell membranes. The membrane protein (M) is the most abundant virion component and gives the envelope its shape. The third constituent is the envelope protein (E), which, although minor in both size and quantity, plays a decisive role is envelope formation. In some group 2 CoVs, an additional protein, the hemagglutinin-esterase (HE), appears in the viral envelope. Finally, interior to the envelope, monomers of the nucleocapsid protein (N) wrap the genome into a helical structure.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.
    Virology 03/2012; 427(2):98-106. · 3.35 Impact Factor
  • Advances in experimental medicine and biology 02/2006; 581:573-8. · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronavirus spike (S) protein assembles into virions via its carboxy-terminus, which is composed of a transmembrane domain and an endodomain. Here, the carboxy-terminal charge-rich motif in the endodomain was verified to be critical for the specificity of S assembly into mouse hepatitis virus (MHV). Recombinant MHVs exhibited a range of abilities to accommodate the homologous S endodomains from the betacoronaviruses bovine coronavirus and human SARS-associated coronavirus, the alphacoronavirus porcine transmissible gastroenteritis virus (TGEV), and the gammacoronavirus avian infectious bronchitis virus respectively. Interestingly, in TGEV endodomain chimeras the reverting mutations resulted in stronger S incorporation into virions, and a net gain of negatively charged residues in the charge-rich motif accounted for the improvement. Additionally, MHV S assembly could also be rescued by the acidic carboxy-terminal domain of the nucleocapsid protein. These results indicate an important role for negatively charged endodomain residues in the incorporation of MHV S protein into assembled virions.
    Virology 04/2013; · 3.35 Impact Factor


Available from
Sep 12, 2014