Article

Tidal Hyperinflation during Low Tidal Volume Ventilation in Acute Respiratory Distress Syndrome

Università di Torino, Dipartimento di Anestesiologia e Rianimazione, Ospedale S. Giovanni Battista-Molinette, Corso Dogliotti 14, 10126 Turin, Italy.
American Journal of Respiratory and Critical Care Medicine (Impact Factor: 11.99). 02/2007; 175(2):160-6. DOI: 10.1164/rccm.200607-915OC
Source: PubMed

ABSTRACT Tidal volume and plateau pressure limitation decreases mortality in acute respiratory distress syndrome. Computed tomography demonstrated a small, normally aerated compartment on the top of poorly aerated and nonaerated compartments that may be hyperinflated by tidal inflation.
We hypothesized that despite tidal volume and plateau pressure limitation, patients with a larger nonaerated compartment are exposed to tidal hyperinflation of the normally aerated compartment.
Pulmonary computed tomography at end-expiration and end-inspiration was obtained in 30 patients ventilated with a low tidal volume (6 ml/kg predicted body weight). Cluster analysis identified 20 patients in whom tidal inflation occurred largely in the normally aerated compartment (69.9 +/- 6.9%; "more protected"), and 10 patients in whom tidal inflation occurred largely within the hyperinflated compartments (63.0 +/- 12.7%; "less protected"). The nonaerated compartment was smaller and the normally aerated compartment was larger in the more protected patients than in the less protected patients (p = 0.01). Pulmonary cytokines were lower in the more protected patients than in the less protected patients (p < 0.05). Ventilator-free days were 7 +/- 8 and 1 +/- 2 d in the more protected and less protected patients, respectively (p = 0.01). Plateau pressure ranged between 25 and 26 cm H(2)O in the more protected patients and between 28 and 30 cm H(2)O in the less protected patients (p = 0.006).
Limiting tidal volume to 6 ml/kg predicted body weight and plateau pressure to 30 cm H(2)O may not be sufficient in patients characterized by a larger nonaerated compartment.

Download full-text

Full-text

Available from: Peter Herrmann, Jul 01, 2015
1 Follower
 · 
244 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bildgebende Verfahren gehören heute in der Medizin zu den etablierten Standarduntersuchungsmethoden. Mit ihrer Hilfe lassen sich digitale Bilder von inneren Organen, Gelenken oder Geweben im menschlichen Körper erzeugen. Überwiegend nutzt man diese Verfahren für die Diagnose, bei der Therapie zur Verlaufskontrolle oder bei Vorsorgeuntersuchungen. Die digitalen Bilddaten werden von den Aufnahmegeräten, den sogenannten Modalitäten, erzeugt und in einem digitalen Bildarchiv, dem Picture Archiving and Communication System, kurz PACS genannt, im Digital-Imaging-and-Communica-tions-in-Medicine-Format, auch DICOM abgekürzt, gespeichert. Um den Befund besser beurteilen zu können, werden die Datensätze der Bilder mittels Software verarbeitet und am Bildschirm des Geräts dargestellt. Diese Bildverarbeitung dient im Wesentlichen der optischen Beurteilung der Befunde. Der spezialisierte Mediziner erkennt darauf strukturelle und funktionelle Veränderungen. Insbesondere bei wissenschaftlichen Fragestellungen sind kommerzielle Systeme meist zu unflexibel. Spezielle Analysemethoden lassen sich damit meist nicht durchführen. Die Weiterentwicklung der mit LabVIEW programmierten Software Maluna macht es möglich, ohne weiteren Fremdcode digitale medizinische Bilder im DICOM-Format direkt in LabVIEW zu öffnen und weiterzuverarbeiten. Neben computertomografischen Bildern von Täglich werden gewaltige DICOM-Datenmengen erzeugt. Mit der Software Maluna lassen sich diese Bilddaten von allen gängigen Modalitäten einlesen und anschließend weiterverarbeiten.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute Respiratory Distress Syndrome (ARDS) is understood as an inflammation-induced disruption of the alveolar endothelial-epithelial barrier that results in increased permeability and surfactant dysfunction followed by alveolar flooding and collapse. ARDS management relies on mechanical ventilation. The current challenge is to determine the optimal ventilatory strategies that minimize ventilator-induced lung injury (VILI) while providing a reasonable gas exchange. The data support that a tidal volume between 6-8 ml/kg of predicted body weight providing a plateau pressure < 30 cmH₂O should be used. High positive end expiratory pressure (PEEP) has not reduced mortality, nevertheless secondary endpoints are improved. The rationale used for high PEEP argues that it prevents cyclic opening and closing of airspaces, probably the major culprit of development of VILI. Chest computed tomography has contributed to our understanding of anatomic-functional distribution patterns in ARDS. Electric impedance tomography is a technique that is radiation-free, but still under development, that allows dynamic monitoring of ventilation distribution at bedside.
    Medicina Intensiva 34(6):418-27. · 1.24 Impact Factor
  • Source
    Intensivmedizin + Notfallmedizin 04/2010; 47(3):185-207. DOI:10.1007/s00390-010-0169-2