Article

Apoptosis promoted by up-regulation of TFPT (TCF3 fusion partner) appears p53 independent, cell type restricted and cell density influenced.

Department of Biomolecular Sciences and Biotechnology, University of Milano, Milano, Italy.
APOPTOSIS (Impact Factor: 3.61). 01/2007; 11(12):2217-24. DOI: 10.1007/s10495-006-0195-5
Source: PubMed

ABSTRACT The TFPT/FB1 gene was identified because of its involvement in childhood pre-B acute lymphoblastic leukaemia (ALL). Although its specific function is still unclear, Tfpt has been implicated in cell proliferation and induction of programmed cell death (PCD). Given the critical role of PCD in leukemogenesis, we have investigated the responsiveness of different cell lines to TFPT over expression and the consequent induction of PCD by proliferation kinetic analysis, immunolocalization and TUNEL assay. We have also tested the involvement of factors implicated in cell cycle progression and apoptosis, i.e. caspases, p53, Cdc2. Our results indicate that over expression of TFPT promotes caspase 9-dependent apoptosis, nevertheless the apoptotic cascade is engaged only in culture conditions sustaining cell proliferation and different cell lines display differential responsiveness to TFPT induced apoptosis Although p53 is a main regulator of apoptosis in mammalian cells, the Tfpt induced apoptosis appears p53-independent. These results are discussed relatively to the role played by TFPT in leukemogenesis.

0 Followers
 · 
41 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: PRPF31, a gene located at chromosome 19q13.4, encodes the ubiquitous splicing factor PRPF31. The gene lies in a head-to-head arrangement with TFPT, a poorly characterized gene with a role in cellular apoptosis. Mutations in PRPF31 have been implicated in autosomal dominant retinitis pigmentosa (adRP), a frequent and important cause of blindness worldwide. Disease associated with PRPF31 mutations is unusual, in that there is often non-penetrance of the disease phenotype in affected families, caused by differential expression of PRPF31. This study aimed to characterize the basic promoter elements of PRPF31 and TFPT. Luciferase reporter constructs were made, using genomic DNA from an asymptomatic individual with a heterozygous deletion of the entire putative promoter region. Fragments were tested by the dual-luciferase reporter assay in HeLa and RPE-1 cell lines. A comparison was made between the promoter regions of symptomatic and asymptomatic mutation-carrying individuals. A patient (CAN493) with adRP was identified, harbouring a regulatory region mutation; both alleles were assayed by the dual-luciferase reporter assay. Luciferase assays led to the identification of core promoters for both PRPF31 and TFPT; despite their shared gene architecture, the two genes appear to be controlled by slightly different regulatory regions. One functional polymorphism was identified in the PRPF31 promoter that increased transcriptional activation. The change was not, however, consistent with the observed symptomatic-asymptomatic phenotypes in a family affected by PRPF31-adRP. Analysis of the mutant promoter fragment from CAN493 showed a >50% reduction in promoter activity, suggesting a disease mechanism of functional haploinsufficiency-the first report of this disease mechanism in adRP.
    Human Molecular Genetics 06/2012; 21(18):4126-37. DOI:10.1093/hmg/dds242 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to identify the hepatoprotective effects of reynosin, sesquiterpenes from the leaves of Laurus nobilis, against thioacetamide (TAA)-induced apoptosis in primary hepatocyte cultures and an in vivo mouse model. Rat hepatocytes were isolated and pretreated with 0.13, 0.64, or 3.22 μM reynosin and then exposed to 100 mM TAA. Reynosin treatment significantly inhibited TAA-induced apoptosis and hepatocellular DNA damage in primary rat hepatocytes. We observed an increase in levels of antiapoptotic Bcl-2, Bcl-XL mRNA and a decrease in levels of proapoptotic Bax mRNA following reynosin treatment of hepatocytes. Apoptosis in BALB/c mice was induced with intra-peritoneal injection of 200 mg/kg TAA for 2 weeks every other day. Then reynosin (5 mg/kg) and TAA were intragastrically given for 3 weeks every other day. Aspartate aminotransferase and alanine aminotransferase levels in the blood of mice were decreased in the reynosin administration group. Bcl-2 and Bcl-XL mRNA levels were increased, and the Bax mRNA level was decreased in reynosin-treated mice. Thus, reynosin inhibited TAA-induced apoptosis in primary hepatocytes and an in vivo mouse model.
    Archives of Pharmacal Research 02/2013; 36(4). DOI:10.1007/s12272-013-0039-0 · 1.75 Impact Factor