Article

Interleukin-10 determines viral clearance or persistence in vivo

Viral Immunobiology Laboratory, Molecular and Integrative Neuroscience Department, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
Nature Medicine (Impact Factor: 28.05). 12/2006; 12(11):1301-9. DOI: 10.1038/nm1492
Source: PubMed

ABSTRACT Persistent viral infections are a major health concern. One obstacle inhibiting the clearance of persistent infections is functional inactivation of antiviral T cells. Although such immunosuppression occurs rapidly after infection, the mechanisms that induce the loss of T-cell activity and promote viral persistence are unknown. Herein we document that persistent viral infection in mice results in a significant upregulation of interleukin (IL)-10 by antigen-presenting cells, leading to impaired T-cell responses. Genetic removal of Il10 resulted in the maintenance of robust effector T-cell responses, the rapid elimination of virus and the development of antiviral memory T-cell responses. Therapeutic administration of an antibody that blocks the IL-10 receptor restored T-cell function and eliminated viral infection. Thus, we identify a single molecule that directly induces immunosuppression leading to viral persistence and demonstrate that a therapy to neutralize IL-10 results in T-cell recovery and the prevention of viral persistence.

Download full-text

Full-text

Available from: Dorian McGavern, Oct 28, 2014
0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin 10 is a cytokine with the ability to reduce or terminate inflammation. Chronic viral infection, such as infection of chronic hepatitis B, hepatitis C and HIV, has increased levels of interleukin 10 in peripheral blood. Serum IL-10 levels are also high in certain cancers. Blocking IL-10 signalling at the time of immunisation clears chronic viral infection and prevents tumour growth in animal models. We review recent advances in this area, with the emphasis on potential use of this novel strategy to treat chronic viral infection and cancer in human. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cellular Immunology 01/2015; 293(2):126-129. DOI:10.1016/j.cellimm.2014.12.012 · 1.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sub-Saharan Africa has continued leading in prevalence and incidence of major infectious disease killers such as HIV/AIDS, tuberculosis, and malaria. Epidemiological triad of infectious diseases includes susceptible host, pathogen, and environment. It is imperative that all aspects of vertices of the infectious disease triad are analysed to better understand why this is so. Studies done to address this intriguing reality though have mainly addressed pathogen and environmental components of the triad. Africa is the most genetically diverse region of the world as well as being the origin of modern humans. Malaria is relatively an ancient infection in this region as compared to TB and HIV/AIDS; from the evolutionary perspective, we would draw lessons that this ancestrally unique population now under three important infectious diseases both ancient and exotic will be skewed into increased genetic diversity; moreover, other evolutionary forces are also still at play. Host genetic diversity resulting from many years of malaria infection has been well documented in this population; we are yet to account for genetic diversity from the trio of these infections. Effect of host genetics on treatment outcome has been documented. Host genetics of sub-Saharan African population and its implication to infectious diseases are an important aspect that this review seeks to address.
    08/2014; 2014(108291). DOI:10.1155/2014/108291
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bluetongue is an infectious disease caused by bluetongue virus (BTV), which affects sheep, goat, cattle and certain wild ruminants. However severe clinical signs are usually seen with significant mortality in sheep than cattle and goat. To date, comparative studies on innate immune responses of sheep and goat infected with BTV is lacking. In this study, we compared the innate immune response of sheep and goat by infecting the peripheral blood mononuclear cells (PBMCs) with BTV serotype 23. In our study, we observed that sheep PBMCs supports higher virus replication than goat PBMCs. To delineate the role of innate immune response in differential viral replication observed in this study, we examined TLR3 (Receptor for dsRNA virus) mRNA expression and cytokine profiles (IL-1β, Il-6, IL-8, Il-10, IL-12p40, TNF-α, IFN-γ and IFN-α) following Poly I:C (TLR3 ligand) stimulation and BTV 23 infection. In our present study, sheep PBMCs had significantly higher TLR3 mRNA levels, TLR3 specific ligand (Poly I:C) stimulation resulted in increased levels of IFN-γ at transcriptional and translational levels along with IL-8 and IL-10 at transcriptional levels. Whereas, the levels of TNF-α was higher in goat PBMCs at transcriptional levels. BTV infected sheep PBMCs expressed significantly higher levels of IFN-γ at transcriptional and translational levels along with IL-6, IL-8 and IL-10 at transcriptional levels. Whereas the expression levels of TNF-α and IFN-α at transcriptional and translational levels were significantly high in goat PBMCs. To examine the potential factor for consistent increase in the expression of TNF-α, we sequenced the promoter region of TNF-α and identified a total of five single nucleotide polymorphisms (SNP) and one indel in goat TNF-α promoter region. Luciferase assay for transcriptional activity of the promoter showed that goat TNF-α has significantly enhanced transcriptional activity in comparison with sheep TNF-α promoter. Altogether, our data suggests that the expression levels of TNF-α and IFN-α and/or IL-10 plays crucial role in replication of BTV 23.
    Veterinary Research Communications 09/2013; DOI:10.1007/s11259-013-9579-5 · 1.36 Impact Factor