Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia

Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA.
Cancer Cell (Impact Factor: 23.89). 11/2006; 10(4):257-68. DOI: 10.1016/j.ccr.2006.08.020
Source: PubMed

ABSTRACT Using a mouse model of human acute myeloid leukemia (AML) induced by the MLL-AF9 oncogene, we demonstrate that colony-forming cells (CFCs) in the bone marrow and spleen of leukemic mice are also leukemia stem cells (LSCs). These self-renewing cells (1) are frequent, accounting for 25%-30% of myeloid lineage cells at late-stage disease; (2) generate a phenotypic, morphologic, and functional leukemia cell hierarchy; (3) express mature myeloid lineage-specific antigens; and (4) exhibit altered microenvironmental interactions by comparison with the oncogene-immortalized CFCs that initiated the disease. Therefore, the LSCs responsible for sustaining, expanding, and regenerating MLL-AF9 AML are downstream myeloid lineage cells, which have acquired an aberrant Hox-associated self-renewal program as well as other biologic features of hematopoietic stem cells.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute myeloid leukemia (AML) is a heterogeneous disease caused by aberrant proliferation and/or differentiation of myeloid progenitors. However, only ~65% of AML patients respond to induction chemotherapy and the overall survival rate for AML remains low (~24% for 5-year survival). The conventional view suggests that ATP-binding cassette (ABC) transporters contribute to treatment failure due to their drug-effluxing capabilities. This might be overly simplistic. Some ABC transporters export endogenous substrates that have defined roles in normal hematopoietic progenitors. It is conceivable that these substances also provide an advantage to leukemic progenitors. This review will highlight how certain endogenous substrates impact normal hematopoietic cells and suggest that ABC transporters facilitate export of these substances to affect both normal hematopoietic and leukemic progenitors. For example, the ability to export certain endogenous ligands may facilitate leukemogenesis by modifying leukemic progenitor cell proliferation or survival. If so, the addition of ABC transporter inhibitors to traditional chemotherapy might improve therapeutic efficacy by not just increasing intracellular drug accumulation but also blocking the beneficial effects ABC transporter ligands have on cell survival. © 2015 Elsevier Inc. All rights reserved.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conventional strategies are not particularly successful in the treatment of leukaemia, and identification of signalling pathways crucial to the activity of leukaemia stem cells will provide targets for the development of new therapies. Here we report that certain receptors containing the immunoreceptor tyrosine-based inhibition motif (ITIM) are crucial for the development of acute myeloid leukaemia (AML). Inhibition of expression of the ITIM-containing receptor LAIR1 does not affect normal haematopoiesis but abolishes leukaemia development. LAIR1 induces activation of SHP-1, which acts as a phosphatase-independent signalling adaptor to recruit CAMK1 for activation of downstream CREB in AML cells. The LAIR1-SHP-1-CAMK1-CREB pathway sustains the survival and self-renewal of AML stem cells. Intervention in the signalling initiated by ITIM-containing receptors such as LAIR1 may result in successful treatment of AML.
    Nature Cell Biology 04/2015; 17(5). DOI:10.1038/ncb3158 · 20.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal translocations affecting mixed lineage leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate the efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cancer cell 03/2015; DOI:10.1016/j.ccell.2015.02.016 · 23.89 Impact Factor


Available from