Article

Regulation of expression of BIK proapoptotic protein in human breast cancer cells: p53-dependent induction of BIK mRNA by fulvestrant and proteasomal degradation of BIK protein.

Department of Tumor Biology, Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts 02129, USA.
Cancer Research (Impact Factor: 8.65). 11/2006; 66(20):10153-61. DOI: 10.1158/0008-5472.CAN-05-3696
Source: PubMed

ABSTRACT Induction of mRNA for BIK proapoptotic protein by doxorubicin or gamma-irradiation requires the DNA-binding transcription factor activity of p53. In MCF7 cells, pure antiestrogen fulvestrant also induces BIK mRNA and apoptosis. Here, we provide evidence that, in contrast to doxorubicin or gamma-irradiation, fulvestrant induction of BIK mRNA is not a direct effect of the transcriptional activity of p53, although p53 is necessary for this induction. It is known that p53 up-regulated modulator of apoptosis (PUMA) mRNA is induced directly by the transcriptional activity of p53. Whereas gamma-irradiation induced both BIK and PUMA mRNA, only BIK mRNA was induced by fulvestrant. Whereas both fulvestrant and doxorubicin induced BIK mRNA, only doxorubicin enhanced the DNA-binding activity of p53 and induced PUMA mRNA. Small interfering RNA (siRNA) suppression of p53 expression as well as overexpression of dominant-negative p53 effectively inhibited the fulvestrant induction of BIK mRNA, protein, and apoptosis. Transcriptional activity of a 2-kb BIK promoter, which contained an incomplete p53-binding sequence, was not affected by fulvestrant when tested by reporter assay. Fulvestrant neither affected the stability of the BIK mRNA transcripts. Interestingly, other human breast cancer cells, such as ZR75-1, constitutively expressed BIK mRNA even without fulvestrant. In these cells, however, BIK protein seemed to be rapidly degraded by proteasome, and siRNA suppression of BIK in ZR75-1 cells inhibited apoptosis induced by MG132 proteasome inhibitor. These results suggest that expression of BIK in human breast cancer cells is regulated at the mRNA level by a mechanism involving a nontranscriptional activity of p53 and by proteasomal degradation of BIK protein.

0 Bookmarks
 · 
49 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus, which is critical for memory and spatial navigation, contains a proliferating stem cell niche that is especially vulnerable to antineoplastic drugs such as cisplatin. Although the damaging effects of cisplatin have recently been recognized, the molecular mechanisms underlying its toxic effects on this vital region are largely unknown. Using a focused apoptosis gene array, we analyzed the early cisplatin-induced changes in gene expression in the hippocampus of adult Sprague-Dawley rats and compared the results to those from the inferior colliculus, a non-mitotic auditory region resistant to cisplatin-induced cell death. Two days after a 12 mg/kg dose of cisplatin, significant increases were observed in five proapoptotic genes: Bik, Bid, Bok, Trp53p2, and Card6 and a significant decrease in one antiapoptotic gene Bcl2a1. In contrast, Nol3, an antiapoptotic gene, showed a significant increase in expression. The cisplatin-induced increase in Bid mRNA and decrease in Bcl2a1 mRNA were accompanied by a corresponding increase and decrease of their respective proteins in the hippocampus. In contrast, the cisplatin-induced changes in Bcl2a1, Bid, Bik, and Bok gene expression in the inferior colliculus were strikingly different from those in the hippocampus consistent with the greater susceptibility of the hippocampus to cisplatin toxicity. Cisplatin also significantly reduced immunolabeling of the cell proliferation marker Ki67 in the subgranular zone of the hippocampus 2 days post-treatment. These results indicate that cisplatin-induced hippocampal cell death is mediated by increased expression of proapoptotic and decreased antiapoptotic genes and proteins that likely inhibit hippocampal cell proliferation.
    Neurotoxicity Research 11/2013; · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the mitochondria. In this study, we determined that suppression of the death gene Bik promotes resistance to tamoxifen (TAM) in MCF-7 breast cancer cells. We utilized small interfering (siRNA) to specifically knockdown BIK in MCF-7 cells and studied their response to tamoxifen. The levels of cell apoptosis, the potential mitochondrial membrane (∆Ψm), and the activation of total caspases were analyzed. Western blot analysis was used to determine the expression of some BCL-2 family proteins. Flow cytometry studies revealed an increase in apoptosis level in MCF-7 cells and a 2-fold increase in relative BIK messenger RNA (mRNA) expression at a concentration of 6.0 μM of TAM. BIK silencing, with a specific RNAi, blocked TAM-induced apoptosis in 45±6.78% of cells. Moreover, it decreased mitochondrial membrane potential (Ψm) and total caspase activity, and exhibited low expression of pro-apoptotic proteins BAX, BAK, PUMA and a high expression of BCl-2 and MCL-1. The above suggests resistance to TAM, regulating the intrinsic pathway and indicate that BIK comprises an important factor in the process of apoptosis, which may exert an influence the ER pathway, which regulates mitochondrial integrity. Collectively, our results show that BIK is a central component of the programmed cell death of TAM-induced MCF-7 breast cancer cells. The silencing of BIK gene will be useful for future studies to establish the mechanisms of regulation of resistance to TAM.
    International Journal of Oncology 10/2013; 43(6):1777–1786. · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F+RT). This study was conducted to assess the effects of fulvestrant alone versus F+RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F+RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy +/- fulvestrant. The effects of F+RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F+RT was 0.885±0.013 vs. 0.622±0.029 @2Gy, 0.599±0.045 vs. 0.475±0.054 @4 Gy, and 0.472±0.021 vs. 0.380±0.018 @6 Gy RT (p=0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F+RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p<0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F+RT compared with irradiation alone. F+RT leads to a decrease in the surviving fraction, increased cell cycle arrest, downregulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F+RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.
    Biochemical and Biophysical Research Communications 01/2013; · 2.41 Impact Factor