Article

Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat.

Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
The Journal of Comparative Neurology (Impact Factor: 3.66). 01/2007; 499(5):768-96. DOI: 10.1002/cne.21135
Source: PubMed

ABSTRACT The nucleus reuniens (RE) is the largest of the midline nuclei of the thalamus and exerts strong excitatory actions on the hippocampus and medial prefrontal cortex. Although RE projections to the hippocampus have been well documented, no study using modern tracers has examined the totality of RE projections. With the anterograde anatomical tracer Phaseolus vulgaris leuccoagglutinin, we examined the efferent projections of RE as well as those of the rhomboid nucleus (RH) located dorsal to RE. Control injections were made in the central medial nucleus (CEM) of the thalamus. We showed that the output of RE is almost entirely directed to the hippocampus and "limbic" cortical structures. Specifically, RE projects strongly to the medial frontal polar, anterior piriform, medial and ventral orbital, anterior cingulate, prelimbic, infralimbic, insular, perirhinal, and entorhinal cortices as well as to CA1, dorsal and ventral subiculum, and parasubiculum of the hippocampus. RH distributes more widely than RE, that is, to several RE targets but also significantly to regions of motor, somatosensory, posterior parietal, retrosplenial, temporal, and occipital cortices; to nucleus accumbens; and to the basolateral nucleus of amygdala. The ventral midline thalamus is positioned to exert significant control over fairly widespread regions of the cortex (limbic, sensory, motor), hippocampus, dorsal and ventral striatum, and basal nuclei of the amygdala, possibly to coordinate limbic and sensorimotor functions. We suggest that RE/RH may represent an important conduit in the exchange of information between subcortical-cortical and cortical-cortical limbic structures potentially involved in the selection of appropriate responses to specific and changing sets of environmental conditions.

0 Bookmarks
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing.
    Frontiers in Systems Neuroscience 01/2014; 8:83.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
    Nature 04/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Discrete populations of brain cells signal heading direction, rather like a compass. These 'head direction' cells are largely confined to a closely-connected network of sites. We describe, for the first time, a population of head direction cells in nucleus reuniens of the thalamus in the freely-moving rat. This novel subcortical head direction signal potentially modulates the hippocampal CA fields directly and, thus, informs spatial processing and memory.
    eLife. 07/2014;