Article

Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat.

Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
The Journal of Comparative Neurology (Impact Factor: 3.66). 01/2007; 499(5):768-96. DOI:10.1002/cne.21135
Source: PubMed

ABSTRACT The nucleus reuniens (RE) is the largest of the midline nuclei of the thalamus and exerts strong excitatory actions on the hippocampus and medial prefrontal cortex. Although RE projections to the hippocampus have been well documented, no study using modern tracers has examined the totality of RE projections. With the anterograde anatomical tracer Phaseolus vulgaris leuccoagglutinin, we examined the efferent projections of RE as well as those of the rhomboid nucleus (RH) located dorsal to RE. Control injections were made in the central medial nucleus (CEM) of the thalamus. We showed that the output of RE is almost entirely directed to the hippocampus and "limbic" cortical structures. Specifically, RE projects strongly to the medial frontal polar, anterior piriform, medial and ventral orbital, anterior cingulate, prelimbic, infralimbic, insular, perirhinal, and entorhinal cortices as well as to CA1, dorsal and ventral subiculum, and parasubiculum of the hippocampus. RH distributes more widely than RE, that is, to several RE targets but also significantly to regions of motor, somatosensory, posterior parietal, retrosplenial, temporal, and occipital cortices; to nucleus accumbens; and to the basolateral nucleus of amygdala. The ventral midline thalamus is positioned to exert significant control over fairly widespread regions of the cortex (limbic, sensory, motor), hippocampus, dorsal and ventral striatum, and basal nuclei of the amygdala, possibly to coordinate limbic and sensorimotor functions. We suggest that RE/RH may represent an important conduit in the exchange of information between subcortical-cortical and cortical-cortical limbic structures potentially involved in the selection of appropriate responses to specific and changing sets of environmental conditions.

0 0
 · 
0 Bookmarks
 · 
73 Views
  • Frontiers in Systems Neuroscience 01/2014; 8:37.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The reuniens and rhomboid nuclei, located in the ventral midline of the thalamus, have long been regarded as having non-specific effects on the cortex, while other evidence suggests that they influence behaviour related to the photoperiod, hunger, stress or anxiety. We summarise the recent anatomical, electrophysiological and behavioural evidence that these nuclei also influence cognitive processes. The first part of this review describes the reciprocal connections of the reuniens and rhomboid nuclei with the medial prefrontal cortex and the hippocampus. The connectivity pattern among these structures is consistent with the idea that these ventral midline nuclei represent a nodal hub to influence prefrontal-hippocampal interactions. The second part describes the stimulation or blockade of the ventral midline thalamus on cortical and hippocampal electrophysiological activity. The final part summarizes recent literature supporting the emerging view that the reuniens and rhomboid nuclei may contribute to learning, memory consolidation and perhaps behavioral flexibility, in addition to general behavior and aspects of metabolism.
    Progress in Neurobiology 09/2013; · 9.04 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: In this report we describe how common brain networks within the medial frontal cortex (MFC) facilitate adaptive behavioral control in rodents and humans. We demonstrate that after errors, low-frequency oscillations below 12 Hz are modulated over the midfrontal cortex in humans and within the prelimbic and anterior cingulate regions of the MFC in rats. These oscillations were phase locked between the MFC and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase coherent with low-frequency field oscillations, particularly after errors. Inactivating the medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low-frequency oscillations after errors and increased low-frequency spike-field coupling within the motor cortex. Our results describe a new mechanism for behavioral adaptation through low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance.
    Nature Neuroscience 10/2013; · 15.25 Impact Factor