Article

Endogenous opioid blockade and impulsive responding in alcoholics and healthy controls.

Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA 94608, USA.
Neuropsychopharmacology (Impact Factor: 7.83). 03/2007; 32(2):439-49. DOI: 10.1038/sj.npp.1301226
Source: PubMed

ABSTRACT The opioid receptor antagonist naltrexone (NTX) is one of few approved treatments for alcoholism, yet the mechanism by which it reduces drinking remains unclear. In rats, NTX reduces morphine-induced impulsive choice bias; however, nothing is known about the drug's effect on discrete aspects of impulsive behavior in humans, such as decision-making and inhibitory control. Here, we used a modified delay discounting procedure to investigate whether NTX improves decision-making or inhibitory control in humans. We measured the effect of acute NTX (50 mg) on choice between smaller sooner (SS) and larger later monetary rewards and on response errors (motor mismatch) in a high conflict condition in a group of abstinent alcoholics (AA) and healthy control subjects (CS). We previously reported that AA selected the SS option significantly more often than did CS in this paradigm. If the choice bias of AA is due to enhanced endogenous opioid signaling in response to potential reward, NTX should reduce such bias in the AA group. We found that NTX did not reliably reduce impulsive choice in the AA group; however, NTX's effect on choice bias across individuals was robustly predictable. NTX's effect on choice bias was significantly correlated with scores on Rotter's Locus of Control (LOC) scale; increasingly internal LOC scores predicted increasing likelihood of impulsive choices on NTX. In addition, we found that NTX significantly enhanced control of motor responses, particularly within the CS group. These results suggest that endogenous opioids may impair response selection during decision-making under conflict, and that NTX's effects on explicit decision-making are personality-dependent. Determining the biological basis of this dependence could have important implications for effective alcoholism treatment.

Full-text

Available from: Howard L Fields, Jun 10, 2015
0 Followers
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review interventions with empirical support for reducing alcohol use and enhancing self-control. Although any intervention that reduces drinking could improve self-control, we focus here on interventions with evidence of direct benefit for both indications. Although no intervention yet has strong evidence for dual efficacy, multiple interventions have strong evidence for one indication and solid or suggestive evidence for the other. Among pharmacotherapy, opioid antagonists currently have the best evidence of efficacy at reducing alcohol use and enhancing self-control. Nicotinic partial agonist varenicline also seems to be efficacious for alcohol use and self-control. Many psychosocial and behavioral interventions (e.g. cognitive behavioral therapy, contingency management, mindfulness training) may have efficacy for both indications, on the basis of purported mechanisms of action and empirical evidence. Cognitive bias modification and neurophysiological interventions have promise for alcohol use and self-control, and warrant further research. We offer several other suggestions for future research.
    03/2014; 1(1). DOI:10.1007/s40429-013-0008-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impulsivity is a primary feature of many psychiatric disorders, most notably attention deficit hyperactivity disorder and drug addiction. Impulsivity includes a number of processes such as the inability to delay gratification, the inability to withhold a motor response, or acting before all of the relevant information is available. These processes are mediated by neural systems that include dopamine, serotonin, norepinephrine, glutamate and cannabinoids. We examine, for the first time, the role of opioid systems in impulsivity by testing whether inactivation of the mu- (Oprm1) or delta- (Oprd1) opioid receptor gene alters motor impulsivity in mice. Wild-type and knockout mice were examined on either a pure C57BL6/J (BL6) or a hybrid 50% C57Bl/6J-50% 129Sv/pas (HYB) background. Mice were trained to respond for sucrose in a signaled nose poke task that provides independent measures of associative learning (responses to the reward-paired cue) and motor impulsivity (premature responses). Oprm1 knockout mice displayed a remarkable decrease in motor impulsivity. This was observed on the two genetic backgrounds and did not result from impaired associative learning, as responses to the cue signaling reward did not differ across genotypes. Furthermore, mutant mice were insensitive to the effects of ethanol, which increased disinhibition and decreased conditioned responding in wild-type mice. In sharp contrast, mice lacking the Oprd1 gene were more impulsive than controls. Again, mutant animals showed no deficit in associative learning. Ethanol completely disrupted performance in these animals. Together, our results suggest that mu-opioid receptors enhance, whereas delta-opioid receptors inhibit, motor impulsivity. This reveals an unanticipated contribution of endogenous opioid receptor activity to disinhibition. In a broader context, these data suggest that alterations in mu- or delta-opioid receptor function may contribute to impulse control disorders.
    PLoS ONE 02/2009; 4(2):e4410. DOI:10.1371/journal.pone.0004410 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gambling is characterized by cognitive distortions in the processing of chance and skill that are exacerbated in pathological gambling. Opioid and dopamine dysregulation is implicated in pathological gambling, but it is unclear whether these neurotransmitters modulate gambling distortions. The objective of the current study was to assess the effects of the opioid receptor antagonist naltrexone and the dopamine D2 receptor antagonist haloperidol on gambling behavior. Male recreational gamblers (n = 62) were assigned to receive single oral doses of naltrexone 50 mg, haloperidol 2 mg or placebo, in a parallel-groups design. At 2.5 h post-dosing, participants completed a slot machine task to elicit monetary wins, "near-misses," and a manipulation of personal choice, and a roulette game to elicit two biases in sequential processing, the gambler's fallacy and the hot hand belief. Psychophysiological responses (electrodermal activity and heart rate) were taken during the slot machine task, and plasma prolactin increase was assessed. The tasks successfully induced the gambling effects of interest. Some of these effects differed across treatment groups, although the direction of effect was not in line with our predictions. Differences were driven by the naltrexone group, which displayed a greater physiological response to wins, and marginally higher confidence ratings on winning streaks. Prolactin levels increased in the naltrexone group, but did not differ between haloperidol and placebo, implying that naltrexone but not haloperidol may have been functionally active at these doses. Our results support opioid modulation of cognition during gambling-like tasks, but did not support the more specific hypothesis that naltrexone may act to ameliorate cognitive distortions.
    Frontiers in Behavioral Neuroscience 10/2013; 7:138. DOI:10.3389/fnbeh.2013.00138 · 4.16 Impact Factor