Article

Visualization of transient encounter complexes in protein-protein association.

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
Nature (Impact Factor: 42.35). 12/2006; 444(7117):383-6. DOI: 10.1038/nature05201
Source: PubMed

ABSTRACT Kinetic data on a number of protein-protein associations have provided evidence for the initial formation of a pre-equilibrium encounter complex that subsequently relaxes to the final stereospecific complex. Site-directed mutagenesis and brownian dynamics simulations have suggested that the rate of association can be modulated by perturbations in charge distribution outside the direct interaction surfaces. Furthermore, rate enhancement through non-specific binding may occur by either a reduction in dimensionality or the presence of a short-range, non-specific attractive potential. Here, using paramagnetic relaxation enhancement, we directly demonstrate the existence and visualize the distribution of an ensemble of transient, non-specific encounter complexes under equilibrium conditions for a relatively weak protein-protein complex between the amino-terminal domain of enzyme I and the phosphocarrier protein HPr. Neither the stereospecific complex alone nor any single alternative conformation can account fully for the intermolecular paramagnetic relaxation enhancement data. Restrained rigid-body simulated annealing refinement against the paramagnetic relaxation enhancement data enables us to obtain an atomic probability distribution map of the non-specific encounter complex ensemble that qualitatively correlates with the electrostatic surface potentials on the interacting proteins. Qualitatively similar results are presented for two other protein-protein complexes.

0 Followers
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A method is proposed to study protein-ligand binding in a system governed by specific and nonspecific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultraweak associations lead instead to broader distributions, a manifestation of nonspecific, sparsely populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (prerelaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformational selection, multiplicity of binding modes, and nonspecific interactions, and to illustrate how the method can be applied to study these problems systematically. The equilibrium distributions can be used to generate biasing functions for simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Journal of Computational Chemistry 03/2015; 36(13). DOI:10.1002/jcc.23883 · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complex of yeast cytochrome c peroxidase and cytochrome c is a paradigm of the biological electron transfer (ET). Building on seven decades of research, two different models have been proposed to explain its functional redox activity. One postulates that the intermolecular ET occurs only in the dominant, high-affinity protein–protein orientation, while the other posits formation of an additional, low-affinity complex, which is much more active than the dominant one. Unlike the high-affinity interaction—extensively studied by X-ray crystallography and NMR spectroscopy—until now the binding of cytochrome c to the low-affinity site has not been observed directly, but inferred mainly from kinetics experiments. Here we report the structure of this elusive, weak protein complex and show that it consists of a dominant, inactive bound species and an ensemble of minor, ET-competent protein–protein orientations, which summarily account for the experimentally determined value of the ET rate constant.
    Nature Communications 05/2015; 6:7073. DOI:10.1038/ncomms8073 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomolecules adopt a dynamic ensemble of conformations, each with the potential to interact with binding partners or perform the chemical reactions required for a multitude of cellular functions. Recent advances in X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and other techniques are helping us realize the dream of seeing-in atomic detail-how different parts of biomolecules shift between functional substates using concerted motions. Integrative structural biology has advanced our understanding of the formation of large macromolecular complexes and how their components interact in assemblies by leveraging data from many low-resolution methods. Here, we review the growing opportunities for integrative, dynamic structural biology at the atomic scale, contending there is increasing synergistic potential between X-ray crystallography, NMR and computer simulations to reveal a structural basis for protein conformational dynamics at high resolution.
    Nature Methods 03/2015; 12(4):307-318. DOI:10.1038/nmeth.3324 · 25.95 Impact Factor