Article

Visualization of transient encounter complexes in protein-protein association.

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
Nature (Impact Factor: 42.35). 12/2006; 444(7117):383-6. DOI: 10.1038/nature05201
Source: PubMed

ABSTRACT Kinetic data on a number of protein-protein associations have provided evidence for the initial formation of a pre-equilibrium encounter complex that subsequently relaxes to the final stereospecific complex. Site-directed mutagenesis and brownian dynamics simulations have suggested that the rate of association can be modulated by perturbations in charge distribution outside the direct interaction surfaces. Furthermore, rate enhancement through non-specific binding may occur by either a reduction in dimensionality or the presence of a short-range, non-specific attractive potential. Here, using paramagnetic relaxation enhancement, we directly demonstrate the existence and visualize the distribution of an ensemble of transient, non-specific encounter complexes under equilibrium conditions for a relatively weak protein-protein complex between the amino-terminal domain of enzyme I and the phosphocarrier protein HPr. Neither the stereospecific complex alone nor any single alternative conformation can account fully for the intermolecular paramagnetic relaxation enhancement data. Restrained rigid-body simulated annealing refinement against the paramagnetic relaxation enhancement data enables us to obtain an atomic probability distribution map of the non-specific encounter complex ensemble that qualitatively correlates with the electrostatic surface potentials on the interacting proteins. Qualitatively similar results are presented for two other protein-protein complexes.

0 Followers
 · 
123 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomolecules adopt a dynamic ensemble of conformations, each with the potential to interact with binding partners or perform the chemical reactions required for a multitude of cellular functions. Recent advances in X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and other techniques are helping us realize the dream of seeing-in atomic detail-how different parts of biomolecules shift between functional substates using concerted motions. Integrative structural biology has advanced our understanding of the formation of large macromolecular complexes and how their components interact in assemblies by leveraging data from many low-resolution methods. Here, we review the growing opportunities for integrative, dynamic structural biology at the atomic scale, contending there is increasing synergistic potential between X-ray crystallography, NMR and computer simulations to reveal a structural basis for protein conformational dynamics at high resolution.
    Nature Methods 03/2015; 12(4):307-318. DOI:10.1038/nmeth.3324 · 25.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing the interface residues will help shed light on protein-protein interactions, which are involved in many important biological processes. Many studies focus on characterizing sequence or structure features of protein interfaces, but there are few studies characterizing the dynamics of interfaces. Therefore, we would like to know whether there is any specific dynamics pattern in the protein-protein interaction interfaces. Thermal fluctuation is an important dynamical property for a residue, and could be quickly estimated by local packing density without large computation since studies have showen closely relationship between these two properties. Therefore, we divided surface of an unbound subunit (free protein subunits before they are involved in forming the protein complexes) into several separate regions, and compared their average thermal fluctuations of different regions in order to characterize the dynamics pattern in unbound protein-protein interaction interfaces. We used weighted contact numbers (WCN), a parameter-free method to quantify packing density, to estimate the thermal fluctuations of residues in the interfaces. By analyzing the WCN distributions of interfaces in unbound subunits from 1394 non-homologous protein complexes, we show that the residues in the central regions of interfaces have higher packing density (i.e. more rigid); on the other hand, residues surrounding the central regions have smaller packing density (i.e. more flexible). The distinct distributions of packing density, suggesting distinct thermal fluctuation, reveals specific dynamics pattern in the interface of unbound protein subunits. We found general trend that the unbound protein-protein interaction interfaces consist of rigid residues in the central regions, which are surrounded by flexible residues. This finding suggests that the dynamics might be one of the important features for the formation of protein complexes.
    BMC Bioinformatics 01/2015; 16(Suppl 1):S7. DOI:10.1186/1471-2105-16-S1-S7 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.
    Quarterly Reviews of Biophysics 02/2015; 48(1):35-116. DOI:10.1017/S0033583514000122 · 10.08 Impact Factor

Full-text (2 Sources)

Download
94 Downloads
Available from
Jun 3, 2014