Article

S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth.

Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA.
Science (Impact Factor: 31.48). 11/2006; 314(5798):467-71. DOI: 10.1126/science.1130276
Source: PubMed

ABSTRACT The tumor suppressor programmed cell death protein 4 (PDCD4) inhibits the translation initiation factor eIF4A, an RNA helicase that catalyzes the unwinding of secondary structure at the 5' untranslated region (5'UTR) of messenger RNAs (mRNAs). In response to mitogens, PDCD4 was rapidly phosphorylated on Ser67 by the protein kinase S6K1 and subsequently degraded via the ubiquitin ligase SCF(betaTRCP). Expression in cultured cells of a stable PDCD4 mutant that is unable to bind betaTRCP inhibited translation of an mRNA with a structured 5'UTR, resulted in smaller cell size, and slowed down cell cycle progression. We propose that regulated degradation of PDCD4 in response to mitogens allows efficient protein synthesis and consequently cell growth.

1 Bookmark
 · 
191 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteasome-mediated degradation is a common mechanism by which cells renew their intracellular proteins and maintain protein homeostasis. In this process, the E3 ubiquitin ligases are responsible for targeting specific substrates (proteins) for ubiquitin-mediated degradation. However, in cancer cells, the stability and the balance between oncoproteins and tumor suppressor proteins are disturbed in part due to deregulated proteasome-mediated degradation. This ultimately leads to either stabilization of oncoprotein(s) or increased degradation of tumor suppressor(s), contributing to tumorigenesis and cancer progression. Therefore, E3 ubiquitin ligases including the SCF types of ubiquitin ligases have recently evolved as promising therapeutic targets for the development of novel anti-cancer drugs. In this review, we highlighted the critical components along the ubiquitin pathway including E1, E2, various E3 enzymes and DUBs that could serve as potential drug targets and also described the available bioactive compounds that target the ubiquitin pathway to control various cancers. Copyright © 2014. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 12/2014; · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: mTOR is a central nutrient sensor that signals a cell to grow and proliferate. Through distinct protein complexes it regulates different levels of available cellular energy substrates required for cell growth. One of the important functions of the complex is to maintain available amino acid pool by regulating protein translation. Dysregulation of mTOR pathway leads to aberrant protein translation which manifests into various pathological states. Our review focuses on the role mTOR signaling plays in protein translation and its physiological role. It also throws some light on available data that show translation dysregulation as a cause of pathological complexities like cancer and the available drugs that target the pathway for cancer treatment.
    Molecular biology international. 01/2014; 2014:686984.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor 4F (eIF4F), the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and preclinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes, such as cell growth and proliferation, enhanced cell survival and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion, and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g., Ras, PI3K/AKT/TOR, and MYC), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as antineoplastic agents. Cancer Res; 75(2); 250-63. ©2014 AACR. ©2014 American Association for Cancer Research.
    Cancer research. 01/2015; 75(2):250-263.