Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins.

Turku PET Centre, University of Turku, Turku, Finland.
The Journal of Physiology (Impact Factor: 4.54). 02/2007; 578(Pt 1):347-58. DOI: 10.1113/jphysiol.2006.121368
Source: PubMed

ABSTRACT Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 +/- 10% higher (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 +/- 4.3 versus 9.0 +/- 6.1 micromol (100 ml)(-1) min(-1), P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause versus treatment; physical activity and inactivity mechanisms differ; gene-environment interaction (including aerobic training adaptations, personalized medicine, and co-twin physical activity); and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, nonalcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, pre-eclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life. © 2012 American Physiological Society. Compr Physiol 2:1143-1211, 2012.
    Comprehensive Physiology. 04/2012; 2(2):1143-1211.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Paediatric nonalcoholic fatty liver disease (NAFLD) is a major public health concern given the recent increase in its prevalence and link to obesity and other metabolic comorbidities. Current treatment strategies involve lifestyle changes. Other surgical and pharmacologic interventions have been proposed; however, limited randomised controlled trials (RCTs) in the paediatric population restrict their use.AimTo review the current management of paediatric NAFLD, including lifestyle and pharmacologic interventions, and to formulate recommendations for study design for future studies.MethodsA MEDLINE, Pubmed and Cochrane Review database search used a combination of keywords, including NAFLD, nonalcoholic steatohepatitis (NASH), paediatric, treatments, lifestyle changes, bariatric surgery, orlistat, metformin, thiazolidinediones, vitamin E, cysteamine bitartrate, ursodeoxycholic acid (UDCA), probiotics, omega-3 fatty acids, pentoxyfylline, farnesoid X receptor agonist and toll-like receptor modifiers. The articles were selected based on their relevance to the review.ResultsLifestyle interventions involving diet and exercise remain first-line treatment for paediatric NAFLD. Bariatric surgery, orlistat, insulin sensitisers and UDCA have been evaluated but are not recommended as first or second-line therapy. Medications such as cysteamine bitartrate, probiotics, polyunsaturated fats and pentoxyfilline share beneficial effects in trials, however, there is a paucity of adequately powered RCTs in which liver histology is evaluated. Vitamin E has been shown to be effective and safe in improving NASH histology in children.Conclusions Lifestyle intervention should be first-line treatment for paediatric NAFLD. Vitamin E should be considered for those with biopsy-proven NASH or borderline NASH failing first-line therapy. Other therapeutics show promising results but require larger RCTs with convincing endpoints. Improved screening techniques, objective validated inclusion criteria and outcome measures as well as rigour in study design are necessary for propelling therapeutic discovery.
    Alimentary Pharmacology & Therapeutics 09/2014; · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epidemics of overweight and obesity has resulted in a significant increase of non alcoholic fatty liver disease (NAFLD), a potentially progressive condition. Currently, obesity related hepatopathy represents therefore the main cause of pediatric chronic liver disease. The first choice treatment at all ages is weight loss and/or lifestyle changes, however compliance is very poor and a pharmacological approach has become necessary. In the present article we present a systematic literature review focusing on established pediatric NALFD drugs (ursodeoxycholic acid, insulin sensitizers, and antioxidants) and on innovative therapeutic options as well. Regarding the former ones, a pediatric pilot study highlighted that ursodeoxycholic acid is not efficient on transaminases levels and bright liver. Similarly, a recent large scale, multicenter randomized clinical trial (TONIC study) showed that also insulin sensitizers and antioxidant vitamin E have scarce effects on serum transaminase levels. Among a large series of novel therapeutic approaches acting on recently proposed different pathomechanisms, probiotics seem hitherto the most interesting and reasonable option for their safety and tolerability. Toll-like receptors modifiers, Pentoxifylline, and Farnesoid X receptors agonists have been still poorly investigated, and will need further studies before becoming possible promising innovative therapeutic strategies.
    Italian Journal of Pediatrics 10/2012; 38(1):55. · 1.24 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014