Article

Novel features in a patient homozygous for the L347P mutation in the PINK1 gene.

The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, CA 94089-1605, USA.
Parkinsonism & Related Disorders (Impact Factor: 4.13). 09/2007; 13(6):359-61. DOI: 10.1016/j.parkreldis.2006.08.009
Source: PubMed

ABSTRACT The purpose of this study was to assess the genotype-phenotype of PINK1 mutations. We genotyped eight known mutations in three clinic-based cohorts with Parkinsonism and found one homozygous p.L347P mutation in PINK1. Clinically, hypo-osmia and profound diurnal variation of symptoms were identified as novel features; fluorodopa positron emission tomography revealed striking decline in striatal fluorodopa uptake. We suggest that it may be possible to clinically separate this form of Parkinsonism from dopa-responsive dystonia and Parkin-related Parkinsonism. Furthermore, as this mutation has only been reported in Filipinos (two originated from Luzon island), our results support the hypothesis of a common founder.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The quasi-one dimensional (Q1D) Er3+–Yb3+ codoped single-crystal MoO3 ribbons with width range from 1 to 5μm, and maximum length about 30μm have been synthesized by the vapor transport method. The samples were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscope, and luminescence spectra. By a 975nm laser diode (LD) as excitation source, the blue, green and red emission bands centered at about 408, 532, 553 and 657nm were detected, which attributed to the 2H9/2→4I15/2, 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+, respectively. The three-, and two-photon process was responsible for the blue, green and red up-conversion emissions mechanism for the Q1D Er3+–Yb3+ codoped single-crystal MoO3 ribbons, respectively. The results suggested that the Q1D Er3+–Yb3+ codoped single-crystal MoO3 ribbons will have potential applications in remote bio-imaging and surface enhanced Raman scattering.
    Optics Communications 05/2011; 284(10):2528-2531. · 1.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 3.6% of patients with Parkinson's disease develop symptoms before age 45. Early-onset Parkinson's disease (EOPD) patients have a higher familial recurrence risk than late-onset patients, and 3 main recessive EOPD genes have been described. We aimed to establish the prevalence of mutations in these genes in a UK cohort and in previous studies. We screened 136 EOPD probands from a high-ascertainment regional and community-based prevalence study for pathogenic mutations in PARK2 (parkin), PINK1, PARK7 (DJ-1), and exon 41 of LRRK2. We also carried out a systematic review, calculating the proportion of cases with pathogenic mutations in previously reported studies. We identified 5 patients with pathogenic PARK2, 1 patient with PINK1, and 1 with LRRK2 mutations. The rate of mutations overall was 5.1%. Mutations were more common in patients with age at onset (AAO) < 40 (9.5%), an affected first-degree relative (6.9%), an affected sibling (28.6%), or parental consanguinity (50%). In our study EOPD mutation carriers were more likely to present with rigidity and dystonia, and 6 of 7 mutation carriers had lower limb symptoms at onset. Our systematic review included information from >5800 unique cases. Overall, the weighted mean proportion of cases with PARK2 (parkin), PINK1, and PARK7 (DJ-1) mutations was 8.6%, 3.7%, and 0.4%, respectively. PINK1 mutations were more common in Asian subjects. The overall frequency of mutations in known EOPD genes was lower than previously estimated. Our study shows an increased likelihood of mutations in patients with lower AAO, family history, or parental consanguinity. © 2012 Movement Disorder Society.
    Movement Disorders 09/2012; 27(12):1522-9. · 5.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The list of genetic causes of syndromes of dystonia parkinsonism grows constantly. As a consequence, the diagnosis becomes more and more challenging for the clinician. Here, we summarize the important causes of dystonia parkinsonism including autosomal-dominant, recessive, and x-linked forms. We cover dopa-responsive dystonia, Wilson's disease, Parkin-, PINK1-, and DJ-1-associated parkinsonism (PARK2, 6, and 7), x-linked dystonia-parkinsonism/Lubag (DYT3), rapid-onset dystonia-parkinsonism (DYT12) and DYT16 dystonia, the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) including pantothenate kinase (PANK2)- and PLA2G6 (PARK14)-associated neurodegeneration, neuroferritinopathy, Kufor-Rakeb disease (PARK9) and the recently described SENDA syndrome; FBXO7-associated neurodegeneration (PARK15), autosomal-recessive spastic paraplegia with a thin corpus callosum (SPG11), and dystonia parkinsonism due to mutations in the SLC6A3 gene encoding the dopamine transporter. They have in common that in all these syndromes there may be a combination of dystonic and parkinsonian features, which may be complicated by pyramidal tract involvement. The aim of this review is to familiarize the clinician with the phenotypes of these disorders.
    Current Neurology and Neuroscience Reports 11/2010; 10(6):431-9. · 3.78 Impact Factor