Significant proportions of with reduced intracellular nuclear transport proteins mobilities resolved by fluorescence correlation spectroscopy

Department of Molecular, Microbial and Structural Biology, University of Connecticut, Storrs, Connecticut, United States
Journal of Molecular Biology (Impact Factor: 3.96). 02/2007; 365(1):50-65. DOI: 10.1016/j.jmb.2006.09.089
Source: PubMed

ABSTRACT Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is generally accepted that transport through the nuclear pore complex (NPC) involves an abundance of phenylalanine-glycine rich protein domains (FG-domains) that serve as docking sites for soluble nuclear transport receptors (NTRs) and their cargo complexes. But the precise mechanism of translocation through the NPC allowing for high speed and selectivity is still vividly debated. To ultimately decipher the underlying gating mechanism it is indispensable to shed more light on the molecular arrangement of FG-domains and the distribution of NTR-binding sites within the central channel of the NPC. In this review we revisit current transport models, summarize recent results regarding translocation through the NPC obtained by super-resolution microscopy and finally discuss the status and potential of optical methods in the analysis of the NPC.
    European journal of cell biology 05/2011; 90(9):751-8. DOI:10.1016/j.ejcb.2011.04.004 · 3.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Originally developed for applications in physics and physical chemistry, fluorescence fluctuation spectroscopy is becoming widely used in cell biology. This review traces the development of the method and describes some of the more important applications. Specifically, the methods discussed include fluorescence correlation spectroscopy (FCS), scanning FCS, dual color cross-correlation FCS, the photon counting histogram and fluorescence intensity distribution analysis approaches, the raster scanning image correlation spectroscopy method, and the Number and Brightness technique. The physical principles underlying these approaches will be delineated, and each of the methods will be illustrated using examples from the literature.
    Biophysical Reviews 09/2009; 1(3):105-118. DOI:10.1007/s12551-009-0013-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human karyopherin beta3, highly homologous to a yeast protein secretion enhancer (PSE1), has often been reported to be associated with a mediator of a nucleocytoplasmic transport pathway. Previously, we showed that karyopherin beta3 complemented the PSE1 and KAP123 double mutant. Our research suggested that karyopherin beta has an evolutionary function similar to that of yeast PSE1 and/or KAP 123. In this study, we performed yeast two-hybrid screening to find a protein which would interact with karyopherin beta3 and identified apolipoprotein A-I (apo A-I), a secretion protein with a primary function in cholesterol transport. By using in vitro binding assay, co-immunoprecipitation, and colocalization studies, we defined an interaction between karyopherin beta3 and apo A-I. In addition, overexpression of karyopherin beta3 significantly increased apo A-I secretion. These results suggest that karyopherin beta3 plays a crucial role in apo A-I secretion. These findings may be relevant to the study of a novel function of karyopherin beta3 and coronary artery diseases associated with apo A-I.
    Molecules and Cells 07/2008; 26(3):291-8. · 2.24 Impact Factor


Available from