Article

Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli.

Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy.
Journal of Bacteriology (Impact Factor: 2.69). 02/2007; 189(1):244-53. DOI: 10.1128/JB.01126-06
Source: PubMed

ABSTRACT The outer membrane (OM) of gram-negative bacteria is an asymmetric lipid bilayer that protects the cell from toxic molecules. Lipopolysaccharide (LPS) is an essential component of the OM in most gram-negative bacteria, and its structure and biosynthesis are well known. Nevertheless, the mechanisms of transport and assembly of this molecule in the OM are poorly understood. To date, the only proteins implicated in LPS transport are MsbA, responsible for LPS flipping across the inner membrane, and the Imp/RlpB complex, involved in LPS targeting to the OM. Here, we present evidence that two Escherichia coli essential genes, yhbN and yhbG, now renamed lptA and lptB, respectively, participate in LPS biogenesis. We show that mutants depleted of LptA and/or LptB not only produce an anomalous LPS form, but also are defective in LPS transport to the OM and accumulate de novo-synthesized LPS in a novel membrane fraction of intermediate density between the inner membrane (IM) and the OM. In addition, we show that LptA is located in the periplasm and that expression of the lptA-lptB operon is controlled by the extracytoplasmic sigma factor RpoE. Based on these data, we propose that LptA and LptB are implicated in the transport of LPS from the IM to the OM of E. coli.

Download full-text

Full-text

Available from: Alessandra Polissi, Jun 22, 2015
2 Followers
 · 
82 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipopolysaccharide (LPS) is an essential component of the outer membranes (OM) of most Gram-negative bacteria, which plays a crucial role in protection of the bacteria from toxic compounds and harsh conditions. The LPS is biosynthesized at the cytoplasmic side of inner membrane (IM), and then transported across the aqueous periplasmic compartment and assembled correctly at the outer membrane. This process is accomplished by seven LPS transport proteins (LptA-G), but the transport mechanism remains poorly understood. Here, we present findings by pull down assays in which the periplasmic component LptA interacts with both the IM complex LptBFGC and the OM complex LptDE in vitro, but not with complex LptBFG. Using purified Lpt proteins, we have successfully reconstituted the seven transport proteins as a complex in vitro. In addition, the LptC may play an essential role in regulating the conformation of LptBFG to secure the lipopolysaccharide from the inner membrane. Our results contribute to the understanding of lipopolysaccharide transport mechanism and will provide a platform to study the detailed mechanism of the LPS transport in vitro.
    Central European Journal of Biology 02/2014; 9(2). DOI:10.2478/s11535-013-0250-5 · 0.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
    Frontiers in Cellular and Infection Microbiology 12/2012; 2:162. DOI:10.3389/fcimb.2012.00162 · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endotoxin refers lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria. Lipopolysaccharide is comprised of a hydrophilic polysaccharide and a hydrophobic component known as lipid A which is responsible for the major bioactivity of endotoxin. Lipopolysaccharide can be recognized by immune cells as a pathogen-associated molecule through Toll-like receptor 4. Most enzymes and genes related to the biosynthesis and export of lipopolysaccharide have been identified in Escherichia coli, and they are shared by most Gram-negative bacteria based on available genetic information. However, the detailed structure of lipopolysaccharide differs from one bacterium to another, suggesting that additional enzymes that can modify the basic structure of lipopolysaccharide exist in bacteria, especially some pathogens. These structural modifications of lipopolysaccharide are sometimes tightly regulated. They are not required for survival but closely related to the virulence of bacteria. In this chapter we will focus on the mechanism of biosynthesis and export of lipopolysaccharide in bacteria.
    Sub-cellular biochemistry 01/2010; 53:3-25. DOI:10.1007/978-90-481-9078-2_1