Article

TOAC spin labels in the backbone of alamethicin: EPR studies in lipid membranes.

Max-Planck-Institut für Biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, Germany.
Biophysical Journal (Impact Factor: 3.67). 01/2007; 92(2):473-81. DOI: 10.1529/biophysj.106.092775
Source: PubMed

ABSTRACT Alamethicin is a 19-amino-acid residue hydrophobic peptide that produces voltage-dependent ion channels in membranes. Analogues of the Glu(OMe)(7,18,19) variant of alamethicin F50/5 that are rigidly spin-labeled in the peptide backbone have been synthesized by replacing residue 1, 8, or 16 with 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxyl (TOAC), a helicogenic nitroxyl amino acid. Conventional electron paramagnetic resonance spectra are used to determine the insertion and orientation of the TOAC(n) alamethicins in fluid lipid bilayer membranes of dimyristoyl phosphatidylcholine. Isotropic (14)N-hyperfine couplings indicate that TOAC(8) and TOAC(16) are situated in the hydrophobic core of the membrane, whereas the TOAC(1) label resides closer to the membrane surface. Anisotropic hyperfine splittings show that alamethicin is highly ordered in the fluid membranes. Experiments with aligned membranes demonstrate that the principal diffusion axis lies close to the membrane normal, corresponding to a transmembrane orientation. Combination of data from the three spin-labeled positions yields both the dynamic order parameter of the peptide backbone and the intramolecular orientations of the TOAC groups. The latter are compared with x-ray diffraction results from alamethicin crystals. Saturation transfer electron paramagnetic resonance, which is sensitive to microsecond rotational motion, reveals that overall rotation of alamethicin is fast in fluid membranes, with effective correlation times <30 ns. Thus, alamethicin does not form large stable aggregates in fluid membranes, and ionic conductance must arise from transient or voltage-induced associations.

0 Bookmarks
 · 
57 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structures of membrane-associated peptides and molecular interactions between peptides and cell membrane bilayers govern biological functions of these peptides. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study such structures and interactions at the molecular level. In this research, SFG has been applied, supplemented by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), to characterize the interactions between alamethicin (a model for larger channel proteins) and different lipid bilayers in the absence of membrane potential. The orientation of alamethicin in lipid bilayers has been determined using SFG amide I spectra detected with different polarization combinations. It was found that alamethicin adopts a mixed alpha-helical and 3(10)-helical structure in fluid-phase lipid bilayers. The helix (mainly alpha-helix) at the N-terminus tilts at about 63 degrees versus the surface normal in a fluid-phase 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine-1,1,2,2-d4-N,N,N-trimethyl-d9 (d-DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. The 3(10)-helix at the C-terminus (beyond the Pro14 residue) tilts at about 43 degrees versus the surface normal. This is the first time to apply SFG to study a 3(10)-helix experimentally. When interacting with a gel-phase lipid bilayer, alamethicin lies down on the gel-phase bilayer surface or aggregates or both, which does not have significant insertion into the lipid bilayer.
    The Journal of Physical Chemistry B 02/2010; 114(9):3334-40. · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used electron paramagnetic resonance (EPR) to probe the homo- and heterooligomeric interactions of reconstituted sarcoplasmic reticulum Ca-ATPase (SERCA) and its regulator phospholamban (PLB). SERCA is responsible for restoring calcium to the sarcoplasmic reticulum to allow muscle relaxation, whereas PLB inhibits cardiac SERCA unless phosphorylated at Ser(16). To determine whether changes in protein association play essential roles in regulation, we detected the microsecond rotational diffusion of both proteins using saturation transfer EPR. Peptide synthesis was used to create a fully functional and monomeric PLB mutant with a spin label rigidly coupled to the backbone of the transmembrane helix, while SERCA was reacted with a Cys-specific spin label. Saturation transfer EPR revealed that sufficiently high lipid/protein ratios minimized self-association for both proteins. Under these dilute conditions, labeled PLB was substantially immobilized after co-reconstitution with unlabeled SERCA, reflecting their association to form the regulatory complex. Ser(16) phosphorylation slightly increased this immobilization. Complementary measurements with labeled SERCA showed no change in mobility after co-reconstitution with unlabeled PLB, regardless of its phosphorylation state. We conclude that phosphorylating monomeric PLB can relieve SERCA inhibition without changes in the oligomeric states of these proteins, indicating a structural rearrangement within the heterodimeric regulatory complex.
    Biophysical Journal 09/2012; 103(6):1370-8. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alamethicin is a 19-amino-acid residue hydrophobic peptide of the peptaibol family that has been the object of numerous studies for its ability to produce voltage-dependent ion channels in membranes. In this work, for the first time electron paramagnetic resonance spectroscopy was applied to study the interaction of alamethicin with oriented bicelles. We highlighted the effects of increasing peptide concentrations on both the peptide and the membrane in identical conditions, by adopting a twofold spin labeling approach, placing a nitroxide moiety either on the peptide or on the phospholipids. The employment of bicelles affords additional spectral resolution, thanks to the formation of a macroscopically oriented phase that allows to gain information on alamethicin orientation and dynamics. Moreover, the high viscosity of the bicellar solution permits the investigation of the peptide aggregation properties at physiological temperature. We observed that, at 35°C, alamethicin adopts a transmembrane orientation with the peptide axis forming an average angle of 25° with respect to the bilayer normal. Moreover, alamethicin maintains its dynamics and helical tilt constant at all concentrations studied. On the other hand, by increasing the peptide concentration, the bilayer experiences an exponential decrease of the order parameter, but does not undergo micellization, even at the highest peptide to lipid ratio studied (1:20). Finally, the aggregation of the peptide at physiological temperature shows that the peptide is monomeric at peptide to lipid ratios lower than 1:50, then it aggregates with a rather broad distribution in the number of peptides (from 6 to 8) per oligomer.
    Biochimica et Biophysica Acta 07/2013; · 4.66 Impact Factor

Full-text (2 Sources)

View
10 Downloads
Available from
May 23, 2014