Article

Identification of single-domain, Bax-specific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis.

Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada, N9B 3P4.
The FASEB Journal (Impact Factor: 5.48). 01/2007; 20(14):2636-8. DOI: 10.1096/fj.06-6306fje
Source: PubMed

ABSTRACT Bax is a proapoptotic protein implicated in cell death involved in several neurodegenerative diseases. Intracellularly expressed antibody (Ab) fragments (intrabodies) inhibiting Bax function would have potential for developing therapeutics for the aforementioned diseases and can serve as research tools. We report identification, cloning, and functional characterization of several Bax-specific single-domain antibodies (sdAbs). These minimal size Ab fragments, which were isolated from a llama V(H)H phage display library by panning, inhibited Bax function in in vitro assays. Importantly, as intrabodies, these sdAbs, which were stably expressed in mammalian cells, were nontoxic to their host cells and rendered them highly resistant to oxidative-stress-induced apoptosis. The intrabodies prevented mitochondrial membrane potential collapse and apoptosis after oxidative stress in the host cells. These anti-Bax V(H)Hs could be used as tools for studying the role of Bax in oxidative-stress-induced apoptosis and for developing novel therapeutics for the degenerative diseases involving oxidative stress.

0 Bookmarks
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetically modified T cells to recognize tumor-associated antigens by transgenic TCRs or chimeric antigen receptors (CAR) have been successfully applied in clinical trials. However, the disadvantages of either TCR mismatching or the requirement of a surface tumor antigen limit their wider applications in adoptive T cell therapy. A TCR-like chimeric receptor, specific for the melanoma-related gp100/HLA-A2 complex was created by joining a TCR-like antibody GPA7 with the endodomains of CD28 and CD3-ζ chain. This TCR-like CAR, GPA7-28z, was subsequently introduced into human T cells. Retargeted T cells expressing GPA7-28z could exhibit efficient cytotoxic activities against human melanoma cells in vitro in the context with HLA-A2. Furthermore, infusion of GPA7-28z-transduced T cells suppressed melanoma progression in a xenograft mouse model. Redirecting human T cells with TCR-like CARs would be a promising alternative approach to TCR-mediated therapy for melanoma patients, which is also feasible for targeting a variety of other tumor antigens.
    Scientific Reports 01/2014; 4:3571. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Beside their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
    Biochimica et Biophysica Acta 05/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Beside their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
    Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 01/2014; · 3.19 Impact Factor

Full-text (2 Sources)

Download
9 Downloads
Available from
Jun 5, 2014

Similar Publications