Article

Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology

The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
BMC Genomics (Impact Factor: 4.04). 02/2006; 7:272. DOI: 10.1186/1471-2164-7-272
Source: PubMed

ABSTRACT In this study, we addressed whether a single 454 Life Science GS20 sequencing run provides new gene discovery from a normalized cDNA library, and whether the short reads produced via this technology are of value in gene structure annotation.
A single 454 GS20 sequencing run on adapter-ligated cDNA, from a normalized cDNA library, generated 292,465 reads that were reduced to 252,384 reads with an average read length of 92 nucleotides after cleaning. After clustering and assembly, a total of 184,599 unique sequences were generated containing over 400 SSRs. The 454 sequences generated hits to more genes than a comparable amount of sequence from MtGI. Although short, the 454 reads are of sufficient length to map to a unique genome location as effectively as longer ESTs produced by conventional sequencing. Functional interpretation of the sequences was carried out by Gene Ontology assignments from matches to Arabidopsis and was shown to cover a broad range of GO categories. 53,796 assemblies and singletons (29%) had no match in the existing MtGI. Within the previously unobserved Medicago transcripts, thousands had matches in a comprehensive protein database and one or more of the TIGR Plant Gene Indices. Approximately 20% of these novel sequences could be found in the Medicago genome sequence. A total of 70,026 reads generated by the 454 technology were mapped to 785 Medicago finished BACs using PASA and over 1,000 gene models required modification. In parallel to 454 sequencing, 4,445 5'-prime reads were generated by conventional sequencing using the same library and from the assembled sequences it was shown to contain about 52% full length cDNAs encoding proteins from 50 to over 500 amino acids in length.
Due to the large number of reads afforded by the 454 DNA sequencing technology, it is effective in revealing the expression of transcripts from a broad range of GO categories and contains many rare transcripts in normalized cDNA libraries, although only a limited portion of their sequence is uncovered. As with longer ESTs, 454 reads can be mapped uniquely onto genomic sequence to provide support for, and modifications of, gene predictions.

0 Followers
 · 
132 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sea cucumber Apostichopus japonicus is an important economic species in China. Its dorsal body wall color is commonly tawny, whereas its ventral surface is fawn. Albino sea cucumbers are rarely observed. In order to profile gene expression and screen albinism-related genes, we compared the transcriptome of albino samples with a control by 454 cDNA sequencing. We found that 6 539 identified genes on the basis of sequence similarity to known genes were expressed in the albino A. japonicus. The gene ontology analysis indicated that the transcription of genes associated with the terms of biological regulation and pigmentation was non-abundant in the albino library compared to the control. Based on an analysis using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we identified 14 important genes that were involved in major intercellular signaling pathways related to melanin synthesis, such as tyrosine metabolism, the mitogen-activated protein kinase (MAPK) pathway, and melanogenesis. The expressions of fibroblast growth factor receptor 4 (FGFR4), protein kinase C (PKC), protein kinase A (PKA), and Ras genes were significantly down-regulated in the albino transcriptome compared with the control, while the expressions of homogentisate 1, 2-dioxygenase gene (HGO), cAMP-responsive element binding protein (CREB), transcription factor AP-1(c-jun), and calmodulin (CaM) were significantly up-regulated (Fisher’s exact test, p < 0.05). These differentially expressed genes could be candidate genes for revealing the mechanism of albinism and investigating regulation of melanin synthesis in A. japonicus.
    Acta Oceanologica Sinica -English Edition- 08/2014; 33(8):55-61. DOI:10.1007/s13131-014-0464-z · 0.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sheepgrass (Leymus chinensis) is an important perennial forage grass across the Eurasian Steppe and is adaptable to various environmental conditions, but little is known about its molecular mechanism responding to grazing and BSA deposition. Because it has a large genome, RNA sequencing is expensive and impractical except for the next-generation sequencing (NGS) technology. In this study, NGS technology was employed to characterize de novo the transcriptome of sheepgrass after defoliation and grazing treatments and to identify differentially expressed genes (DEGs) responding to grazing and BSA deposition. We assembled more than 47 M high-quality reads into 120,426 contigs from seven sequenced libraries. Based on the assembled transcriptome, we detected 2,002 DEGs responding to BSA deposition during grazing. Enrichment analysis of Gene ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the effects of grazing and BSA deposition involved more apoptosis and cell oxidative changes compared to defoliation. Analysis of DNA fragments, cell oxidative factors and the lengths of leaf scars after grazing provided physiological and morphological evidence that BSA deposition during grazing alters the oxidative and apoptotic status of cells. This research greatly enriches sheepgrass transcriptome resources and grazing-stress-related genes, helping us to better understand the molecular mechanism of grazing in sheepgrass. The grazing-stress-related genes and pathways will be a valuable resource for further gene-phenotype studies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.
    Frontiers in Plant Science 12/2014; 5. DOI:10.3389/fpls.2014.00698 · 3.64 Impact Factor

Full-text (3 Sources)

Download
4 Downloads
Available from
Feb 23, 2015