Article

Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides.

Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 12/2006; 128(43):14073-80. DOI: 10.1021/ja063076p
Source: PubMed

ABSTRACT We report an atomistic physical model for the passive membrane permeability of cyclic peptides. The computational modeling was performed in advance of the experiments and did not involve the use of "training data". The model explicitly treats the conformational flexibility of the peptides by extensive conformational sampling in low (membrane) and high (water) dielectric environments. The passive membrane permeabilities of 11 cyclic peptides were obtained experimentally using a parallel artificial membrane permeability assay (PAMPA) and showed a linear correlation with the computational results with R(2) = 0.96. In general, the results support the hypothesis, already well established in the literature, that the ability to form internal hydrogen bonds is critical for passive membrane permeability and can be the distinguishing factor among closely related compounds, such as those studied here. However, we have found that the number of internal hydrogen bonds that can form in the membrane and the solvent-exposed polar surface area correlate more poorly with PAMPA permeability than our model, which quantitatively estimates the solvation free energy losses upon moving from high-dielectric water to the low-dielectric interior of a membrane.

1 Bookmark
 · 
575 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Self-assembled cyclic peptide nanotubes have attracted much attention because of their antimicrobial properties. Here, we present calculations on the formation of cyclic peptide dimers using basin-hopping and discrete path sampling. We present an analysis of the basin-hopping move sets that most efficiently explore the conformations of cyclic peptides. Group rotation moves, in which sections of the ring are rotated as a rigid body, are the most effective for cyclic peptides containing up to 20 residues. For cyclic peptide dimers, we find that a combination of group rotation intramolecular moves and rigid body intermolecular moves performs well. Discrete path sampling calculations on the cyclic peptide dimers show significant differences in the dimerization of hexa- and octapeptides.
    Journal of Chemical Theory and Computation 03/2014; 10(4):1810–1816. · 5.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sampling low energy conformations of macrocycles is challenging due to the large size of many of these molecules and the constraints imposed by the macrocycle. We present a new conformational search method (implemented in MacroModel) that uses brief MD simulations followed by minimization and normal-mode search steps. The method was parameterized using a set of 100 macrocycles from the PDB and CSD. It was then tested on a publicly available dataset for which there are published results using alternative methods; we found that when the same force field is used (in this case MMFFs in vacuum), our method tended to identify conformations with lower energies than what the other methods identified. The performance on a new set of 50 macrocycles from the PDB and CSD was also quite good; the mean and median RMSD values for just the ring atoms was 0.60 Å and 0.33 Å, respectively. However, the RMSD values for macrocycles with more than 30 ring-atoms were quite a bit larger compared to the smaller macrocycles. Possible origins for this and ideas for improving the performance on very large macrocycles are discussed.
    Journal of Chemical Information and Modeling 09/2014; 54(10):2680. · 4.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental and computational studies have shown that cellular membranes deform to stabilize the inclusion of transmembrane (TM) proteins harboring charge. Recent analysis suggests that membrane bending helps to expose charged and polar residues to the aqueous environment and polar head groups. We previously used elasticity theory to identify membrane distortions that minimize the insertion of charged TM peptides into the membrane. Here, we extend our work by showing that it also provides a novel, computationally efficient method for exploring the energetics of ion and small peptide penetration into membranes. First, we show that the continuum method accurately reproduces energy profiles and membrane shapes generated from molecular simulations of bare ion permeation at a fraction of the computational cost. Next, we demonstrate that the dependence of the ion insertion energy on the membrane thickness arises primarily from the elastic properties of the membrane. Moreover, the continuum model readily provides a free energy decomposition into components not easily determined from molecular dynamics. Finally, we show that the energetics of membrane deformation strongly depend on membrane patch size both for ions and peptides. This dependence is particularly strong for peptides based on simulations of a known amphipathic, membrane binding peptide from the human pathogen Toxoplasma gondii. In total, we address shortcomings and advantages that arise from using a variety of computational methods in distinct biological contexts.
    Journal of Membrane Biology 03/2014; · 2.48 Impact Factor

Full-text (2 Sources)

Download
112 Downloads
Available from
Jun 3, 2014