Article

Molecular determinants of FGF-21 activity—synergy and cross-talk with PPARγ signaling

Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
Journal of Cellular Physiology (Impact Factor: 3.87). 01/2007; 210(1):1-6. DOI: 10.1002/jcp.20847
Source: PubMed

ABSTRACT Fibroblast growth factor (FGF)-21 is a novel regulator of insulin-independent glucose transport in 3T3-L1 adipocytes and has glucose and triglyceride lowering effects in rodent models of diabetes. The precise mechanisms whereby FGF-21 regulates metabolism remain to be determined. Here we describe the early signaling events triggered by FGF-21 treatment of 3T3-L1 adipocytes and reveal a functional interplay between FGF-21 and peroxisome proliferator-activated receptor gamma (PPARgamma) pathways that leads to a marked stimulation of glucose transport. While the early actions of FGF-21 on 3T3-L1 adipocytes involve rapid accumulation of intracellular calcium and phosphorylation of Akt, GSK-3, p70(S6K), SHP-2, MEK1/2, and Stat3, continuous treatment for 72 h induces an increase in PPARgamma protein expression. Moreover, chronic activation of the PPARgamma pathway in 3T3-L1 adipocytes with the PPARgamma agonist and anti-diabetic agent, rosiglitazone (BRL 49653), enhances FGF-21 action to induce tyrosine phosphorylation of FGF receptor-2. Strikingly, treatment of cells with FGF-21 and rosiglitazone in combination leads to a pronounced increase in expression of the GLUT1 glucose transporter and a marked synergy in stimulation of glucose transport. Together these results reveal a novel synergy between two regulators of glucose homeostasis, FGF-21 and PPARgamma, and further define FGF-21 mechanism of action.

Full-text

Available from: Alexei Kharitonenkov, Jun 10, 2015
0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor-21 (FGF-21) is a metabolic regulator that can influence glucose and lipid control in diabetic rodents and primates. We demonstrate that betaKlotho is an integral part of an activated FGF-21-betaKlotho-FGF receptor (FGFR) complex thus a critical subunit of the FGF-21 receptor. Cells lacking betaKlotho did not respond to FGF-21; the introduction of betaKlotho to these cells conferred FGF-21-responsiveness and recapitulated the entire scope of FGF-21 signaling observed in naturally responsive cells. Interestingly, FGF-21-mediated effects are heparin independent suggesting that betaKlotho plays a role in FGF-21 activity similar to the one played by heparin in the signaling of conventional FGFs. Moreover, in addition to conferring specificity for FGF-21, betaKlotho appears to support FGF-19 activity and mediates the receptor selectivity profile of FGF-19. All together, these results indicate that betaKlotho and FGFRs form the cognate FGF-21 receptor complex, mediating FGF-21 cellular specificity and physiological effects.
    Journal of Cellular Physiology 04/2008; 215(1):1-7. DOI:10.1002/jcp.21357 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. Copyright © 2015 Elsevier Inc. All rights reserved.
    General and Comparative Endocrinology 04/2015; DOI:10.1016/j.ygcen.2015.03.009 · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adipose tissue is a metabolically responsive endocrine organ that secretes a myriad of adipokines. Antidiabetic drugs such as peroxisome proliferator-activated receptor (PPAR) gamma agonists target adipose tissue gene expression and correct hyperglycemia via whole-body insulin sensitization. The mechanism by which altered gene expression in adipose tissue affects liver and muscle insulin sensitivity (and thus glucose homeostasis) is not fully understood. One possible mechanism involves the alteration in adipokine secretion, in particular the up-regulation of secreted factors that increase whole-body insulin sensitivity. Here, we report the use of transcriptional profiling to identify genes encoding for secreted proteins the expression of which is regulated by PPARgamma agonists. Of the 379 genes robustly regulated by two structurally distinct PPARgamma agonists in the epididymal white adipose tissue (EWAT) of db/db mice, 33 encoded for known secreted proteins, one of which was FGF21. Although FGF21 was recently reported to be up-regulated in cultured adipocytes by PPARgamma agonists and in liver by PPARalpha agonists and induction of ketotic states, we demonstrate that the protein is transcriptionally up-regulated in adipose tissue in vivo by PPARgamma agonist treatment and under a variety of physiological conditions, including fasting and high fat diet feeding. In addition, we found that circulating levels of FGF21 protein were increased upon treatment with PPARgamma agonists and under ketogenic states. These results suggest a role for FGF21 in mediating the antidiabetic activities of PPARgamma agonists.
    Molecular pharmacology 06/2008; 74(2):403-12. DOI:10.1124/mol.108.044826 · 4.12 Impact Factor