The Activity of Sunitinib against Gastrointestinal Stromal Tumor Seems to be Distinct from Its Antiangiogenic Effects

Memorial Sloan-Kettering Cancer Center, New York, New York, United States
Clinical Cancer Research (Impact Factor: 8.72). 11/2006; 12(20 Pt 1):6203-4. DOI: 10.1158/1078-0432.CCR-06-1292
Source: PubMed

Full-text preview

Available from:
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sunitinib is an orally bioavailable, multi-targeted tyrosine kinase inhibitor with selectivity for PDGF receptors, VEGF receptors, FLT3, and KIT. Sunitinib was tested at concentrations ranging from 0.1 nM to 1.0 microM against 23 cell lines from the PPTP in vitro panel. We also compared sunitinib (53.5 mg/kg) or vehicle administered for 28 days by oral gavage in 46 murine xenograft models representing 9 distinct pediatric cancer histologies. The leukemia cell line, Kasumi-1 (gain-of-function KIT(Asn822Lys) mutation) was the only line with an in vitro response to sunitinib (IC(50) 75.7 nM). Sunitinib significantly prolonged EFS in 19 of 35 (54%) of the solid tumor, and in 3 of 8 (38%) of the ALL xenografts analyzed. Using the PPTP time to event measure of efficacy, sunitinib had intermediate (13) and high (1) levels of activity against 14 of 34 evaluable solid tumor xenografts, including 4 of 6 rhabdomyosarcoma, 4 of 5 Ewing tumor, and 2 of 3 rhabdoid tumor xenografts. Following cessation of treatment for the 14 solid tumor xenografts without tumor events by day 28, tumor growth rate increased in most. The only regression noted to sunitinib in the solid tumor panels was a complete response in a rhabdoid tumor xenograft. Sunitinib demonstrated significant tumor growth inhibition against most of the PPTP's solid tumor panels, but little activity against the neuroblastoma and ALL panel. Antitumor activity was manifested primarily as tumor growth delay, consistent with an anti-angiogenic effect for sunitinib against many of the pediatric preclinical models evaluated. Pediatr Blood Cancer 2008;51:42-48. (c) 2008 Wiley-Liss, Inc.
    Pediatric Blood & Cancer 07/2008; 51(1):42-8. DOI:10.1002/pbc.21535 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most GIST patients develop clinical resistance to KIT/PDGFRA tyrosine kinase inhibitors (TKI). However, it is unclear whether clinical resistance results from single or multiple molecular mechanisms in each patient. KIT and PDGFRA mutations were evaluated in 53 GIST metastases obtained from 14 patients who underwent surgical debulking after progression on imatinib or sunitinib. To interrogate possible resistance mechanisms across a broad biological spectrum of GISTs, inter- and intra-lesional heterogeneity of molecular drug-resistance mechanisms were evaluated in the following: conventional KIT (CD117)-positive GISTs with KIT mutations in exon 9, 11 or 13; KIT-negative GISTs; GISTs with unusual morphology; and KIT/PDGFRA wild-type GISTs. Genomic KIT and PDGFRA mutations were characterized systematically, using complementary techniques including D-HPLC for KIT exons 9, 11-18 and PDGFRA exons 12, 14, 18, and mutation-specific PCR (V654A, D820G, N822K, Y823D). Primary KIT oncogenic mutations were found in 11/14 patients (79%). Of these, 9/11 (83%), had secondary drug-resistant KIT mutations, including six (67%) with two to five different secondary mutations in separate metastases, and three (34%) with two secondary KIT mutations in the same metastasis. The secondary mutations clustered in the KIT ATP binding pocket and kinase catalytic regions. FISH analyses revealed KIT amplicons in 2/10 metastases lacking secondary KIT mutations. This study demonstrates extensive intra- and inter-lesional heterogeneity of resistance mutations and gene amplification in patients with clinically progressing GIST. KIT kinase resistance mutations were not found in KIT/PDGFRA wild-type GISTs or in KIT-mutant GISTs showing unusual morphology and/or loss of KIT expression by IHC, indicating that resistance mechanisms are fundamentally different in these tumours. Our observations underscore the heterogeneity of clinical TKI resistance, and highlight the therapeutic challenges involved in salvaging patients after clinical progression on TKI monotherapies.
    The Journal of Pathology 09/2008; 216(1):64-74. DOI:10.1002/path.2382 · 7.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The novel multitargeted tyrosine kinase inhibitor sunitinib is used as an antiangiogenic agent for the treatment of several types of cancer, including metastatic renal cell carcinoma (RCC). Sunitinib was shown to positively change the immunosuppressive phenotype in RCC patients. To improve its antitumor efficacy, and offer strategies for its combination with other approaches, it is critical to fully elucidate its mechanisms of action. We show that sunitinib induces tumor cell apoptosis and growth arrest in RCC tumor cells, which correlates with signal transducer and activator of transcription 3 (Stat3) activity inhibition. Sunitinib-mediated direct effects on tumor cells occur regardless of von Hippel-Lindau tumor suppressor gene status and hypoxia-inducible transcription factor-2alpha levels. Reduction of Stat3 activity enhances the antitumor effects of sunitinib, whereas expression of a constitutively activated Stat3 mutant rescues tumor cell death. Intravital multiphoton microscopy data show that sunitinib induces mouse Renca tumor cell apoptosis in vivo before tumor vasculature collapse. Sunitinib also inhibits Stat3 in Renca tumor-associated myeloid-derived suppressor cells (MDSC), down-regulates angiogenic gene expression, and reduces MDSCs and tumor T regulatory cells. These results suggest that Stat3 activity is important for RCC response to sunitinib, and Stat3 inhibition permits the direct proapoptotic activity of sunitinib on tumor cells and positive effects on tumor immunologic microenvironment.
    Cancer Research 03/2009; 69(6):2506-13. DOI:10.1158/0008-5472.CAN-08-4323 · 9.33 Impact Factor
Show more