Article

A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells

Equipe Associée 3665 Université Victor Segalen Bordeaux 2, Institut National de la Santé et de la Recherche Médicale, Unité 587, Hôpital Pellegrin, 33076 Bordeaux, France.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 11/2006; 26(43):10992-1000. DOI: 10.1523/JNEUROSCI.2188-06.2006
Source: PubMed

ABSTRACT Sound stimuli are detected in the cochlea by opening of hair cell mechanotransducer (MT) channels, one of the few ion channels not yet conclusively identified at a molecular level. To define their performance in situ, we measured MT channel properties in inner hair cells (IHCs) and outer hair cells (OHCs) at two locations in the rat cochlea tuned to different characteristic frequencies (CFs). The conductance (in 0.02 mM calcium) of MT channels from IHCs was estimated as 260 pS at both low-frequency and mid-frequency positions, whereas that from OHCs increased with CFs from 145 to 210 pS. The combination of MT channel conductance and tip link number, assayed from scanning electron micrographs, accounts for variation in whole-cell current amplitude for OHCs and its invariance for IHCs. Channels from apical IHCs and OHCs having a twofold difference in unitary conductance were both highly calcium selective but were distinguishable by a small but significant difference in calcium permeability and in their response to lowering ionic strength. The results imply that the MT channel has properties possessed by few known candidates, and its diversity suggests expression of multiple isoforms.

0 Bookmarks
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cochlear hair cells convert sound stimuli into electrical signals by gating of mechanically sensitive ion channels in their stereociliary (hair) bundle. The molecular identity of this ion channel is still unclear, but its properties are modulated by accessory proteins. Two such proteins are transmembrane channel-like protein isoform 1 (TMC1) and tetraspan membrane protein of hair cell stereocilia (TMHS, also known as lipoma HMGIC fusion partner-like 5, LHFPL5), both thought to be integral components of the mechanotransduction machinery. Here we show that, in mice harboring an Lhfpl5 null mutation, the unitary conductance of outer hair cell mechanotransducer (MT) channels was reduced relative to wild type, and the tonotopic gradient in conductance, where channels from the cochlear base are nearly twice as conducting as those at the apex, was almost absent. The macroscopic MT current in these mutants was attenuated and the tonotopic gradient in amplitude was also lost, although the current was not completely extinguished. The consequences of Lhfpl5 mutation mirror those due to Tmc1 mutation, suggesting a part of the MT-channel conferring a large and tonotopically variable conductance is similarly disrupted in the absence of Lhfpl5 or Tmc1. Immunolabelling demonstrated TMC1 throughout the stereociliary bundles in wild type but not in Lhfpl5 mutants, implying the channel effect of Lhfpl5 mutations stems from down-regulation of TMC1. Both LHFPL5 and TMC1 were shown to interact with protocadherin-15, a component of the tip link, which applies force to the MT channel. We propose that titration of the TMC1 content of the MT channel sets the gradient in unitary conductance along the cochlea.
    Proceedings of the National Academy of Sciences 12/2014; 112(5). DOI:10.1073/pnas.1420906112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The majority of hearing loss and balance disorders are caused by the permanent loss of mechanosensory hair cells of the inner ear. Identification of genes and compounds that modulate susceptibility to hair cell death is frequently confounded by the difficulties of assaying for such complex phenomena in mammalian models. The zebrafish has emerged as a powerful animal model for genetic and chemical screening in many contexts. Several characteristics of the zebrafish, such as its small size and external location of mechanosensory hair cells within the lateral line sensory organ, uniquely position it as an ideal model organism for the study of hair cell toxicity. We have used this model to screen for genes and compounds that affect hair cell survival during ototoxin exposure and have identified agents that would not be expected to play a role in this process based on a priori knowledge of their function. The identification of such agents yields better understanding of hair cell death and holds promise to stem hearing loss and balance disorders in the human population.
    Frontiers in Cellular Neuroscience 02/2015; 9:46. DOI:10.3389/fncel.2015.00046 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of the auditory hair cell mechano-electrical transduction (hcMET) channel has been a major focus in the hearing research field since the 1980s when direct mechanical gating of a transduction channel was proposed (Corey and Hudspeth J Neurosci 3:962-976, 1983). To this day, the molecular identity of this channel remains controversial. However, many of the hcMET channel's properties have been characterized, including pore properties, calcium-dependent ion permeability, rectification, and single channel conductance. At this point, elucidating the molecular identity of the hcMET channel will provide new tools for understanding the mechanotransduction process. This review discusses the significance of identifying the hcMET channel, the difficulties associated with that task, as well as the establishment of clear criteria for this identification. Finally, we discuss potential candidate channels in light of these criteria.
    Pflügers Archiv - European Journal of Physiology 09/2014; DOI:10.1007/s00424-014-1606-z · 3.07 Impact Factor