Article

A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells.

Equipe Associée 3665 Université Victor Segalen Bordeaux 2, Institut National de la Santé et de la Recherche Médicale, Unité 587, Hôpital Pellegrin, 33076 Bordeaux, France.
Journal of Neuroscience (Impact Factor: 6.91). 11/2006; 26(43):10992-1000. DOI: 10.1523/JNEUROSCI.2188-06.2006
Source: PubMed

ABSTRACT Sound stimuli are detected in the cochlea by opening of hair cell mechanotransducer (MT) channels, one of the few ion channels not yet conclusively identified at a molecular level. To define their performance in situ, we measured MT channel properties in inner hair cells (IHCs) and outer hair cells (OHCs) at two locations in the rat cochlea tuned to different characteristic frequencies (CFs). The conductance (in 0.02 mM calcium) of MT channels from IHCs was estimated as 260 pS at both low-frequency and mid-frequency positions, whereas that from OHCs increased with CFs from 145 to 210 pS. The combination of MT channel conductance and tip link number, assayed from scanning electron micrographs, accounts for variation in whole-cell current amplitude for OHCs and its invariance for IHCs. Channels from apical IHCs and OHCs having a twofold difference in unitary conductance were both highly calcium selective but were distinguishable by a small but significant difference in calcium permeability and in their response to lowering ionic strength. The results imply that the MT channel has properties possessed by few known candidates, and its diversity suggests expression of multiple isoforms.

0 Bookmarks
 · 
57 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of the auditory hair cell mechano-electrical transduction (hcMET) channel has been a major focus in the hearing research field since the 1980s when direct mechanical gating of a transduction channel was proposed (Corey and Hudspeth J Neurosci 3:962-976, 1983). To this day, the molecular identity of this channel remains controversial. However, many of the hcMET channel's properties have been characterized, including pore properties, calcium-dependent ion permeability, rectification, and single channel conductance. At this point, elucidating the molecular identity of the hcMET channel will provide new tools for understanding the mechanotransduction process. This review discusses the significance of identifying the hcMET channel, the difficulties associated with that task, as well as the establishment of clear criteria for this identification. Finally, we discuss potential candidate channels in light of these criteria.
    Pflugers Archiv : European journal of physiology. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hair cells are mechanosensors for the perception of sound, acceleration, and fluid motion. Mechanotransduction channels in hair cells are gated by tip links, which connect the stereocilia of a hair cell in the direction of their mechanical sensitivity. The molecular constituents of the mechanotransduction channels of hair cells are not known. Here, we show that mechanotransduction is impaired in mice lacking the tetraspan TMHS. TMHS binds to the tip-link component PCDH15 and regulates tip-link assembly, a process that is disrupted by deafness-causing Tmhs mutations. TMHS also regulates transducer channel conductance and is required for fast channel adaptation. TMHS therefore resembles other ion channel regulatory subunits such as the transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) of AMPA receptors that facilitate channel transport and regulate the properties of pore-forming channel subunits. We conclude that TMHS is an integral component of the hair cell's mechanotransduction machinery that functionally couples PCDH15 to the transduction channel.
    Cell 12/2012; 151(6):1283-95. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sound detection by inner ear hair cells requires tip links that interconnect mechanosensory stereocilia and convey force to yet unidentified transduction channels. Current models postulate a static composition of the tip link, with protocadherin 15 (PCDH15) at the lower and cadherin 23 (CDH23) at the upper end of the link. In terminally differentiated mammalian auditory hair cells, tip links are subjected to sound-induced forces throughout an organism's life. Although hair cells can regenerate disrupted tip links and restore hearing, the molecular details of this process are unknown. We developed a novel implementation of backscatter electron scanning microscopy to visualize simultaneously immuno-gold particles and stereocilia links, both of only a few nanometers in diameter. We show that functional, mechanotransduction-mediating tip links have at least two molecular compositions, containing either PCDH15/CDH23 or PCDH15/PCDH15. During regeneration, shorter tip links containing nearly equal amounts of PCDH15 at both ends appear first. Whole-cell patch-clamp recordings demonstrate that these transient PCDH15/PCDH15 links mediate mechanotransduction currents of normal amplitude but abnormal Ca(2+)-dependent decay (adaptation). The mature PCDH15/CDH23 tip link composition is re-established later, concomitant with complete recovery of adaptation. Thus, our findings provide a molecular mechanism for regeneration and maintenance of mechanosensory function in postmitotic auditory hair cells and could help identify elusive components of the mechanotransduction machinery.
    PLoS Biology 06/2013; 11(6):e1001583. · 12.69 Impact Factor