Sound Localization Under Perturbed Binaural Hearing

Department of Biophysics, Radboud University Nijmegen, Nymegen, Gelderland, Netherlands
Journal of Neurophysiology (Impact Factor: 2.89). 01/2007; 97(1):715-26. DOI: 10.1152/jn.00260.2006
Source: PubMed


This paper reports on the acute effects of a monaural plug on directional hearing in the horizontal (azimuth) and vertical (elevation) planes of human listeners. Sound localization behavior was tested with rapid head-orienting responses toward brief high-pass filtered (>3 kHz; HP) and broadband (0.5-20 kHz; BB) noises, with sound levels between 30 and 60 dB, A-weighted (dBA). To deny listeners any consistent azimuth-related head-shadow cues, stimuli were randomly interleaved. A plug immediately degraded azimuth performance, as evidenced by a sound level-dependent shift ("bias") of responses contralateral to the plug, and a level-dependent change in the slope of the stimulus-response relation ("gain"). Although the azimuth bias and gain were highly correlated, they could not be predicted from the plug's acoustic attenuation. Interestingly, listeners performed best for low-intensity stimuli at their normal-hearing side. These data demonstrate that listeners rely on monaural spectral cues for sound-source azimuth localization as soon as the binaural difference cues break down. Also the elevation response components were affected by the plug: elevation gain depended on both stimulus azimuth and on sound level and, as for azimuth, localization was best for low-intensity stimuli at the hearing side. Our results show that the neural computation of elevation incorporates a binaural weighting process that relies on the perceived, rather than the actual, sound-source azimuth. It is our conjecture that sound localization ensues from a weighting of all acoustic cues for both azimuth and elevation, in which the weights may be partially determined, and rapidly updated, by the reliability of the particular cue.

3 Reads
  • Source
    • "Importantly, the work of Kumpik et al. (2010) mentioned above was one of the few studies that demonstrated adaptive change in auditory localization following ear plugging but intriguingly, found no changes in binaural sensitivity in parallel with those changes. Rather, these authors attribute the adaptive change to a relative reweighting of the binaural and monaural spectral cues to location (see also Kacelnik et al., 2006; Van Wanrooij and Van Opstal, 2007). The range of difference in the results of the previous studies could then be explained by reweighting of the different cues available in each study or other practice effects (Musicant and Butler, 1980; Butler, 1987). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear molds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days) performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localization, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear molds or through virtual auditory space stimulation using non-individualized spectral cues. The work with ear molds demonstrates that a relatively short period of training involving audio-motor feedback (5-10 days) significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide spatial cues but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.
    Frontiers in Neuroscience 08/2014; 8(8):237. DOI:10.3389/fnins.2014.00237 · 3.66 Impact Factor
  • Source
    • "Although there has been much recent emphasis on multisensory cue integration, models of cue integration have also been applied to the combination of depth cues within the visual system (Jacobs, 1999), as well as the combination of speech cues within the auditory system (Clayards et al., 2008). It is therefore likely that similar models may apply to the integration of auditory spatial cues (Van Wanrooij and Van Opstal, 2007; Keating et al., 2013a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing loss affecting one ear more than the other is commonly associated with otitis media with effusion, a disorder experienced by approximately 80% of children before the age of two. Asymmetric hearing may also arise in other clinical situations, such as after unilateral cochlear implantation. Here, we consider the role played by spatial cue integration in sound localization under normal acoustical conditions. We then review evidence for adaptive changes in spatial hearing following a developmental hearing loss in one ear, and show that adaptation may be achieved either by learning a new relationship between the altered cues and directions in space or by changing the way different cues are integrated in the brain. We next consider developmental plasticity as a source of vulnerability, describing maladaptive effects of asymmetric hearing loss that persist even when normal hearing is provided. We also examine the extent to which the consequences of asymmetric hearing loss depend upon its timing and duration. Although much of the experimental literature has focused on the effects of a stable unilateral hearing loss, some of the most common hearing impairments experienced by children tend to fluctuate over time. We therefore propose that there is a need to bridge this gap by investigating the effects of recurring hearing loss during development, and outline recent steps in this direction. We conclude by arguing that this work points toward a more nuanced view of developmental plasticity, in which plasticity may be selectively expressed in response to specific sensory contexts, and consider the clinical implications of this.
    Frontiers in Systems Neuroscience 12/2013; 7:123. DOI:10.3389/fnsys.2013.00123
  • Source
    • "Several hypotheses have been proposed to explain how subjects can adapt to the altered interaural cues induced by the earplug including internal representation [23]. During the unisensory A-only training, the only criterion available for the subjects to differentiate between the sounds coming from the unplugged and plugged sides was the possible effect of head shadow and/or pinna cues [5], [27]. The Head Shadow effect leads to the difference both in the intensity and spectral characteristics of the perceived sound because different frequencies are absorbed differently by the head [28], [29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The article aims to test the hypothesis that audiovisual integration can improve spatial hearing in monaural conditions when interaural difference cues are not available. We trained one group of subjects with an audiovisual task, where a flash was presented in parallel with the sound and another group in an auditory task, where only sound from different spatial locations was presented. To check whether the observed audiovisual effect was similar to feedback, the third group was trained using the visual feedback paradigm. Training sessions were administered once per day, for 5 days. The performance level in each group was compared for auditory only stimulation on the first and the last day of practice. Improvement after audiovisual training was several times higher than after auditory practice. The group trained with visual feedback demonstrated a different effect of training with the improvement smaller than the group with audiovisual training. We conclude that cross-modal facilitation is highly important to improve spatial hearing in monaural conditions and may be applied to the rehabilitation of patients with unilateral deafness and after unilateral cochlear implantation.
    PLoS ONE 03/2011; 6(3):e18344. DOI:10.1371/journal.pone.0018344 · 3.23 Impact Factor
Show more

Similar Publications