Sound localization under perturbed binaural hearing.

Department of Biophysics, Radboud University Nijmegen, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands.
Journal of Neurophysiology (Impact Factor: 3.3). 01/2007; 97(1):715-26. DOI: 10.1152/jn.00260.2006
Source: PubMed

ABSTRACT This paper reports on the acute effects of a monaural plug on directional hearing in the horizontal (azimuth) and vertical (elevation) planes of human listeners. Sound localization behavior was tested with rapid head-orienting responses toward brief high-pass filtered (>3 kHz; HP) and broadband (0.5-20 kHz; BB) noises, with sound levels between 30 and 60 dB, A-weighted (dBA). To deny listeners any consistent azimuth-related head-shadow cues, stimuli were randomly interleaved. A plug immediately degraded azimuth performance, as evidenced by a sound level-dependent shift ("bias") of responses contralateral to the plug, and a level-dependent change in the slope of the stimulus-response relation ("gain"). Although the azimuth bias and gain were highly correlated, they could not be predicted from the plug's acoustic attenuation. Interestingly, listeners performed best for low-intensity stimuli at their normal-hearing side. These data demonstrate that listeners rely on monaural spectral cues for sound-source azimuth localization as soon as the binaural difference cues break down. Also the elevation response components were affected by the plug: elevation gain depended on both stimulus azimuth and on sound level and, as for azimuth, localization was best for low-intensity stimuli at the hearing side. Our results show that the neural computation of elevation incorporates a binaural weighting process that relies on the perceived, rather than the actual, sound-source azimuth. It is our conjecture that sound localization ensues from a weighting of all acoustic cues for both azimuth and elevation, in which the weights may be partially determined, and rapidly updated, by the reliability of the particular cue.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research has demonstrated that, over a period of weeks, the auditory system accommodates to changes in the monaural spectral cues for sound locations within the frontal region of space. We were interested to determine if similar accommodation could occur for locations in the posterior regions of space, i.e. in the absence of contemporaneous visual information that indicates any mismatch between the perceived and actual location of a sound source. To distort the normal spectral cues to sound location, eight listeners wore small moulds in each ear. HRTF recordings confirmed that while the moulds substantially altered the monaural spectral cues, sufficient residual cues were retained to provide a basis for relearning. Compared to control measures, sound localization performance initially decreased significantly, with a sevenfold increase in front-back confusions and elevation errors more than doubled. Subjects wore the moulds continuously for a period of up to 60 days (median 38 days), over which time performance improved but remained significantly poorer than control levels. Sound localization performance for frontal locations (audio-visual field) was compared with that for posterior space (audio-only field), and there was no significant difference between regions in either the extent or rate of accommodation. This suggests a common mechanism for both regions of space that does not rely on contemporaneous visual information as a teacher signal for recalibration of the auditory system to modified spectral cues.
    Journal of the Association for Research in Otolaryngology 12/2013; · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural systems must weight and integrate different sensory cues in order to make decisions. However, environmental conditions often change over time, altering the reliability of different cues and therefore the optimal way for combining them. To explore how cue integration develops in dynamic environments, we examined the effects on auditory spatial processing of rearing ferrets with localization cues that were modified via a unilateral earplug, interspersed with brief periods of normal hearing. In contrast with control animals, which rely primarily on timing and intensity differences between their two ears to localize sound sources, the juvenile-plugged ferrets developed the ability to localize sounds accurately by relying more on the unchanged spectral localization cues provided by the single normal ear. This adaptive process was paralleled by changes in neuronal responses in the primary auditory cortex, which became relatively more sensitive to these monaural spatial cues. Our behavioral and physiological data demonstrated, however, that the reweighting of different spatial cues disappeared as soon as normal hearing was experienced, showing for the first time that this type of plasticity can be context specific. These results show that developmental changes can be selectively expressed in response to specific acoustic conditions. In this way, the auditory system can develop and simultaneously maintain two distinct models of auditory space and switch between these models depending on the prevailing sensory context. This ability is likely to be critical for maintaining accurate perception in dynamic environments and may point toward novel therapeutic strategies for individuals who experience sensory deficits during development.
    Current biology: CB 06/2013; · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the prevalence and characteristics of noise-induced hearing loss (NIHL) and the use of hearing protection devices (HPDs) among career firefighters. A Web-based survey and a standard audiometric test were performed with 425 firefighters from three states in the United States. More than 40% showed hearing loss in the noise-sensitive frequencies (4 and 6 kHz). The left ear showed significantly poorer hearing than the right ear. Firefighters having longer years of work in fire services demonstrated significantly worse hearing. Reported use of HPDs was 34% of the time that was needed. Firefighters who used HPDs less were significantly more likely to have hearing loss. This study demonstrated a considerable NIHL problem and low use of HPDs in firefighters. More comprehensive hearing conservation programs should be implemented to reduce NIHL for firefighters.
    Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine 07/2013; · 1.88 Impact Factor