TNFα release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export

Department of Biology, St. John's University, NY 11439, USA.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 01/2007; 351(2):354-60. DOI: 10.1016/j.bbrc.2006.10.045
Source: PubMed

ABSTRACT Tumor necrosis factor-alpha (TNFalpha) is a potent pro-inflammatory cytokine that plays a major role in the pathogenesis of acute and chronic inflammatory disorders such as septic shock and arthritis, respectively. Leukocytes stimulated with inflammatory signals such as lipopolysaccharide (LPS) are the predominant producers of TNFalpha, and thus control of TNFalpha release from stimulated leukocytes represents a potential therapeutic target. Here, we report that leptomycin B (LMB), a specific inhibitor of CRM1-dependent nuclear protein export, inhibits TNFalpha release from LPS-stimulated human peripheral blood neutrophils and mononuclear cells. In addition, immunofluorescence confocal microscopy and immunoblotting analysis indicate that TNFalpha is localized in the nucleus of human neutrophils and mononuclear cells. This study demonstrates that the cellular release of TNFalpha from stimulated leukocytes is mediated by the CRM1-dependent nuclear export mechanism. Inhibition of CRM1-dependent cellular release of TNFalpha could thus provide a novel therapeutic approach for disorders involving excessive TNFalpha release.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that increased nuclear accumulation of IkappaBalpha inhibits NF-kappaB activity and induces apoptosis in human leukocytes. In this study, we wanted to explore the possibility that the nucleocytoplasmic distribution of IkappaBalpha can be used as a therapeutic target for the regulation of NF-kappaB-dependent cytokine synthesis. Treatment of LPS-stimulated human U937 macrophages with an inhibitor of chromosome region maintenance 1-dependent nuclear export, leptomycin B, resulted in the increased nuclear accumulation of IkappaBalpha and inhibition of NF-kappaB DNA binding activity, caused by the nuclear IkappaBalpha-p65 NF-kappaB interaction. Surprisingly, however, whereas mRNA expression and cellular release of TNF-alpha, the beta form of pro-IL-1 (IL-1beta), and IL-6 were inhibited by the leptomycin B-induced nuclear IkappaBalpha, IL-8 mRNA expression and cellular release were not significantly affected. Analysis of in vivo recruitment of p65 NF-kappaB to NF-kappaB-regulated promoters by chromatin immunoprecipitation in U937 cells and human PBMCs indicated that although the p65 recruitment to TNF-alpha, IL-1beta, and IL-6 promoters was inhibited by the nuclear IkappaBalpha, p65 recruitment to IL-8 promoter was not repressed. Chromatin immunoprecipitation analyses using IkappaBalpha and S536 phosphospecific p65 NF-kappaB Abs demonstrated that although the newly synthesized IkappaBalpha induced by postinduction repression is recruited to TNF-alpha, IL-1beta, and IL-6 promoters but not to the IL-8 promoter, S536-phosphorylated p65 is recruited to IL-8 promoter, but not to TNF-alpha, IL-1beta, or IL-6 promoters. Together, these data indicate that the inhibition of NF-kappaB-dependent transcription by nuclear IkappaBalpha in LPS-stimulated macrophages is gene specific and depends on the S536 phosphorylation status of the recruited p65 NF-kappaB.
    The Journal of Immunology 09/2010; 185(6):3685-93. DOI:10.4049/jimmunol.0902230 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear translocation and accumulation of IκBα represents an important mechanism regulating transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes. The nuclear accumulation of IκBα can be induced by post-induction repression in stimulated cells, inhibition of the CRM1-dependent nuclear IκBα export by leptomycin B, and by the inhibition of the 26S proteasome. In addition, IκBα is constitutively localized in the nucleus of human neutrophils, likely contributing to the high rate of spontaneous apoptosis in these cells. In the nucleus, IκBα suppresses transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes, representing an attractive therapeutic target. However, the inhibition of NFκB-dependent genes by nuclear IκBα is promoter specific, and depends on the subunit composition of NFκB dimers and post-translational modifications of the recruited NFκB proteins. In addition, several recent studies have demonstrated an NFκB-independent role of the nuclear IκBα. In this review, we discuss the mechanisms leading to the nuclear accumulation of IκBα and its nuclear functions as potential targets for anti-inflammatory and anti-cancer therapies.
    01/2012; 1(1):56-66.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most cytokines are stored in the cytoplasm until their release into the extracellular environment; however, some cytokines have been reported to localize in the nucleus. Traditional whole cell extract preparation does not provide information about the intracellular localization of cytokines. Here, we describe how to prepare cytoplasmic and nuclear extracts that can be analyzed by immunoblotting. While in this chapter we use this method to analyze intracellular localization of interleukin-8 (IL-8) in human mononuclear leukocytes, this protocol is adaptable to any cell type or protein of interest.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1172:285-293. DOI:10.1007/978-1-4939-0928-5_26 · 1.29 Impact Factor
Show more


Available from