Article

TNF-alpha decreases hsp 27 in human blood mononuclear cells: involvement of protein kinase c.

Medical Education Development Center, Gifu University Graduate School of Medicine, Yanagito 1-1, Gifu 501-1194, Japan.
Life Sciences (Impact Factor: 2.56). 01/2007; 80(3):181-6. DOI: 10.1016/j.lfs.2006.08.035
Source: PubMed

ABSTRACT Treatment of PBMCs with TNF-alpha decreased the levels of heat shock protein (HSP) 27, but had little effect on the level of HSP70. Parallel to the decrease of HSP27, TNF-alpha increased the level of HSP27 in the incubation medium of the cells. The decrease of HSP27 induced by TNF-alpha was suppressed by the pretreatment of PBMCs with the specific protein kinase C (PKC) inhibitor, GF109203X. Furthermore, phorbol myristate acetate (PMA), a PKC stimulant, but not dibutyryl cyclic AMP, a protein kinase A stimulant, decreased the levels of HSP27. To investigate the effect of TNF-alpha on the oligomerization state of HSP27 in PBMCs, we performed sucrose density gradient centrifugation with subsequent fractionation and immunoassay. Extract of vehicle-treated PBMCs contained mainly dissociated forms of HSP27. The amounts of dissociated forms of HSP27 in PBMCs was decreased by TNF-alpha, while the amounts of aggregated form of HSP27 was little changed. In intact PBMCs, HSP27 is constitutively phosphorylated at Ser78, but not at Ser15 or at Ser82. The amount of phosphorylated HSP27 at Ser78 was decreased by TNF-alpha. These results indicate that TNF-alpha reduces HSP27 in PBMCs through PKC activation. This decrease may be due to efflux of dissociated form of HSP27, phosphorylated HSP27 at Ser78, from the cells.

0 Bookmarks
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock proteins (HSPs) are molecular chaperones that facilitate the proper folding and assembly of nascent polypeptides and assist in the refolding and stabilization of damaged polypeptides. Through these largely intracellular functions, the HSPs maintain homeostasis and assure cell survival. However, a growing body of literature suggests that HSPs have important effects in the extracellular environment as well. Extracellular HSPs are released from damaged or stressed cells and appear to act as local "danger signals" that activate stress response programs in surrounding cells. Importantly, extracellular HSPs have been shown to activate the host innate and adaptive immune response. With this in mind, extracellular HSPs are commonly included in a growing list of a family of proteins known as danger-associated molecular patterns (DAMPs) or alarmins, which trigger an immune response to tissue injury, such as may occur with trauma, ischemia-reperfusion injury, oxidative stress, etc. Extracellular HSPs, including Hsp72 (HSPA), Hsp27 (HSPB1), Hsp90 (HSPC), Hsp60 (HSPD), and Chaperonin/Hsp10 (HSPE) are especially attractrive candidates for DAMPs or alarmins which may be particularly relevant in the pathophysiology of the sepsis syndrome.
    The Open Inflammation Journal 10/2011; 4:49-60.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cholesteatoma is a destructive and expanding growth of keratinizing squamous epithelium in the middle ear or petrous apex. The molecular and cellular processes of the pathogenesis of acquired middle ear cholesteatoma have not been fully understood. In this study, comparative proteomic analysis was conducted to investigate the roles of specific proteins in the pathways regarding keratinocyte proliferation in cholesteatoma. The differential proteins were detected by comparing the two-dimension electrophoresis (2-DE) maps of the epithelial tissues of 12 attic cholesteatomas with those of retroauricular skins. There were 14 upregulated proteins in the epithelial tissues of cholesteatoma in comparison with retroauricular skin. The modulation of five crucial proteins, HSP27, PRDX2, GRP75, GRP78 and GRP94, was further determined by RT-PCR, Western blot and immunohistochemistry. Phosphorylation of HSP27 at Ser-82 was identified by mass spectroscopy. The results of this study suggested that phosphorylated HSP27 is the end expression of two potential signal-transduction pathways, and together with PRDX2, they are very likely involved in the proliferation of keratinocytes in cholesteatoma. Upregulations of GRP75, GRP78 and GRP94 in keratinocytes may be able to counter endoplasmic reticulum stress, to inhibit cell apoptosis, to prevent protein unfolding and to promote cholesteatoma growth.
    International Journal of Molecular Sciences 01/2013; 14(7):14439-14459. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In several pathologic conditions, like cardiac ischemia/reperfusion, the sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are hallmarks. The present work aimed to investigate in cardiomyocytes which intracellular signalling pathways are altered by ADR redox ability. To mimic pathologic conditions, freshly isolated calcium tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (X/XO)]. ADR elicited a pro-oxidant signal with generation of reactive species, which was largely magnified by the ROS generating system. However, no change in cardiomyocytes viability was observed. The pro-oxidant signal promoted the translocation to the nucleus of the transcription factors, Heat shock factor-1 (HSF-1) and Nuclear factor-kappaB (NF-kappaB). In addition, proteasome activity was compromised in the experimental groups where the generation of reactive species occurred. The decrease in the proteasome activity of the ADR group resulted from its redox sensitivity, since the activity was recovered by adding the ROS scavenger, tiron. Proteasome inhibition seemed to elicit an increase in HSP70 levels. Furthermore, retention of mitochondrial cytochrome c and inhibition of caspase 3 activity were observed by X/XO incubation in presence or absence of ADR. In conclusion, in spite of all the insults inflicted to the cardiomyocytes, they were capable to activate intracellular responses that enabled their survival. These mechanisms, namely the pathways altered by catecholamine proteasome inhibition, should be further characterized, as they could be of relevance in the ischemia preconditioning and the reperfusion injury.
    Toxicology 01/2009; 257(1-2):70-9. · 4.02 Impact Factor