Article

Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine.

Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5.
FEBS Letters (Impact Factor: 3.58). 12/2006; 580(26):6027-32. DOI: 10.1016/j.febslet.2006.10.035
Source: PubMed

ABSTRACT Molecular modeling predicts that a local anesthetic (LA) lidocaine binds to the resting and open Na(v)1.5 in different modes, interacting with LA-sensing residues known from experiments. Besides the major pathway via the open activation gate, LAs can reach the inner pore via a "sidewalk" between D3S6, D4S6, and D3P. The ammonium group of a cationic LA binds in the focus of the pore-helices macrodipoles, which also stabilize a Na(+) ion chelated by two benzocaine molecules. The LA's cationic group and a Na(+) ion in the selectivity filter repel each other suggesting that the Na(+) depletion upon slow inactivation would stabilize a LA, while a LA would stabilize slow-inactivated states.

0 Bookmarks
 · 
37 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ion channels are targets for many naturally occurring toxins and small-molecule drugs. Despite great progress in the X-ray crystallography of ion channels, we still do not have a complete understanding of the atomistic mechanisms of channel modulation by ligands. In particular, the importance of the simultaneous interaction of permeant ions with the ligand and the channel protein has not been the focus of much attention. Considering these interactions often allows one to rationalize the highly diverse experimental data within the framework of relatively simple structural models. This has been illustrated in earlier studies on the action of local anesthetics, sodium channel activators, as well as blockers of potassium and calcium channels. Here, we discuss the available data with a view to understanding the use-, voltage-, and current carrying cation-dependence of the ligand action, paradoxes in structure-activity relationships, and effects of mutations in these ion channels.
    Trends in Pharmacological Sciences 01/2013; · 9.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The inner pore of potassium channels is targeted by many ligands of intriguingly different chemical structures. Previous studies revealed common and diverse characteristics of action of ligands including cooperativity of ligand binding, voltage- and use-dependencies, and patterns of ligand-sensing residues. Not all these data are rationalized in published models of ligand-channel complexes. Here we have used energy calculations with experimentally defined constraints to dock flecainide, ICAGEN-4, benzocaine, vernakalant, and AVE0118 into the inner pore of Kv1.5 channel. We arrived at ligand-binding models that suggest possible explanations for different values of the Hill coefficient, different voltage dependencies of ligands action, and effects of mutations of residues in subunit interfaces. Two concepts were crucial to build the models. First, the inner-pore block of a potassium channel requires a cationic "blocking particle". A ligand, which lacks a positively charged group, blocks the channel in a complex with a permeant ion. Second, hydrophobic moieties of a flexible ligand have a tendency to bind in hydrophobic subunit interfaces.
    Biochimica et Biophysica Acta 12/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated the structural basis of hERG block by ranolazine, with lidocaine used as a low-potency, structurally similar comparator. Recordings of hERG current (IhERG) were made from cell lines expressing wild-type (WT) or mutant hERG channels. Docking simulations were performed using homology models built on MthK and KvAP templates. In conventional voltage clamp, ranolazine inhibited IhERG with an IC50 of 8.03μM; peak IhERG during ventricular action potential clamp was inhibited ~62% at 10μM. The IC50 values for ranolazine inhibition of the S620T inactivation-deficient and N588K attenuated-inactivation mutants were respectively ~73-fold and ~15-fold that for WT IhERG. Mutations near the bottom of the selectivity filter (V625A, S624A, T623A) exhibited IC50s between ~8 and 19-fold that for WT IhERG, whilst the Y652A and F656A S6 mutations had IC50s ~22-fold and 53-fold WT controls. Low potency lidocaine was comparatively insensitive to both pore-helix and S6 mutations, but was sensitive to direction of K(+) flux and particularly to loss of inactivation, with an IC50 for S620T-hERG ~49-fold that for WT IhERG. Docking simulations indicated that the larger size of ranolazine gives it potential for a greater range of interactions with hERG pore side chains compared to lidocaine, in particular enabling interaction of its two aromatic groups with side chains of both Y652 and F656. The N588K mutation is responsible for the SQT1 variant of short QT syndrome and our data suggest that ranolazine is unlikely to be effective against IKr/hERG in SQT1 patients.
    Journal of Molecular and Cellular Cardiology 05/2014; · 5.15 Impact Factor

Full-text

View
0 Downloads
Available from