Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones

Division of Orthopedics Surgery, Nagoya University, Nagoya, Aichi, Japan
Bone (Impact Factor: 4.46). 02/2007; 40(2):522-8. DOI: 10.1016/j.bone.2006.09.019
Source: PubMed

ABSTRACT Longer treatment period in distraction osteogenesis (DO) leads to more frequent complications. We developed a new technique of transplantation of culture expanded bone marrow cells (BMC) and platelet rich plasma (PRP) in DO of the long bones. Retrospective comparative study was conducted between the bones treated with and without BMC and PRP in DO to assess the efficacy of this new technique of transplantation. Ninety-two bones (46 patients) that were lengthened in our hospital and followed up until removal of the pins were divided into two groups according to the cell (BMC+PRP) treatment. The BMC-PRP(+) group consisted of 32 bones (14 femora, 18 tibiae) in 17 patients (10 boys and 7 girls), while the BMC-PRP(-) group consisted of 60 bones (25 femora, 35 tibiae) in 29 patients (13 boys and 16 girls). The clinical outcome including the age at operation, amount of length gained, the healing index, the delay in consolidation, and complications were compared between the two groups. The healing between the femoral and the tibial lengthening was also assessed. The average age at operation was 15.8 years in the BMC-PRP(+) group and 15.5 years in the BMC-PRP(-) group. Although there were no significant differences in the age at operation and the length gained between the two groups, the average healing indices of the BMC-PRP(+) group in short stature and in limb length discrepancy were significantly lower than those of the BMC-PRP(-) group (P=0.0019 and P=0.0031, respectively). A delay in consolidation was seen in 45% of the BMC-PRP(-) group but never observed in the BMC-PRP(+) group (P<0.0001). The rate of complications was 23% of the BMC-PRP(-) group and only 6% of the BMC-PRP(+) group (P=0.0406). The femoral lengthening showed significantly faster healing than the tibial lengthening by the BMC and PRP transplantation (P=0.0004) In conclusion, transplantation of BMC and PRP shortened the treatment period and reduced associated complications by accelerating new bone formation in DO.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs.
    Journal of Immunology Research 01/2015; 2015:1-17. DOI:10.1155/2015/752510 · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To review the advances and limitations of recent investigations on mandibular distraction osteogenesis (MDO) assisted by mesenchymal stem cell (MSC) transplantation. Following the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines, the PubMed, Scopus, and Cochrane electronic databases were systematically searched and screened from their inception through August 2014. Searching terms included the following: 'distraction osteogenesis', 'mandible OR mandibular OR jaw', and 'cells', without any other limitations. Nineteen studies meeting the eligibility criteria were selected from 227 published articles and used for qualitative synthesis. Fifteen of the studies used small animal models (rats or rabbits), while the other four used large animal models (dogs, pigs or sheep). Among these studies, large variations exist in MDO protocol, cell transplantation time, route and quantity, as well as methodology of outcome assessment. Additionally, all studies had certain biases. Nevertheless, the majority of studies found that MSC transplantation enhanced MDO bone regeneration. Evidence from animal studies indicates that MDO may be enhanced by mesenchymal stem cell transplantation, but many questions related to animal models, MDO protocols, and cell transplantation remain to be investigated. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    Orthodontics and Craniofacial Research 04/2015; 18 Suppl 1:39-49. DOI:10.1111/ocr.12087 · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The transforming growth factor beta (TGF-β) family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors' involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process.
    Mediators of Inflammation 01/2015; 2015:137823. DOI:10.1155/2015/137823 · 2.42 Impact Factor