Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones

Division of Orthopedics Surgery, Nagoya University, Nagoya, Aichi, Japan
Bone (Impact Factor: 4.46). 02/2007; 40(2):522-8. DOI: 10.1016/j.bone.2006.09.019
Source: PubMed

ABSTRACT Longer treatment period in distraction osteogenesis (DO) leads to more frequent complications. We developed a new technique of transplantation of culture expanded bone marrow cells (BMC) and platelet rich plasma (PRP) in DO of the long bones. Retrospective comparative study was conducted between the bones treated with and without BMC and PRP in DO to assess the efficacy of this new technique of transplantation. Ninety-two bones (46 patients) that were lengthened in our hospital and followed up until removal of the pins were divided into two groups according to the cell (BMC+PRP) treatment. The BMC-PRP(+) group consisted of 32 bones (14 femora, 18 tibiae) in 17 patients (10 boys and 7 girls), while the BMC-PRP(-) group consisted of 60 bones (25 femora, 35 tibiae) in 29 patients (13 boys and 16 girls). The clinical outcome including the age at operation, amount of length gained, the healing index, the delay in consolidation, and complications were compared between the two groups. The healing between the femoral and the tibial lengthening was also assessed. The average age at operation was 15.8 years in the BMC-PRP(+) group and 15.5 years in the BMC-PRP(-) group. Although there were no significant differences in the age at operation and the length gained between the two groups, the average healing indices of the BMC-PRP(+) group in short stature and in limb length discrepancy were significantly lower than those of the BMC-PRP(-) group (P=0.0019 and P=0.0031, respectively). A delay in consolidation was seen in 45% of the BMC-PRP(-) group but never observed in the BMC-PRP(+) group (P<0.0001). The rate of complications was 23% of the BMC-PRP(-) group and only 6% of the BMC-PRP(+) group (P=0.0406). The femoral lengthening showed significantly faster healing than the tibial lengthening by the BMC and PRP transplantation (P=0.0004) In conclusion, transplantation of BMC and PRP shortened the treatment period and reduced associated complications by accelerating new bone formation in DO.

  • Source
    • "[55] [56] [57] [58] [59] [60]. Most of the clinical trials used autologous MSCs that were culture expanded [56] [57] or bone marrow aspirate, concentrated using centrifugation [60] [61]. Since MSCs were delivered with the intention to increase the pool of osteoprogenitor cells and not as agents to modulate immune cells, potential change induced by MSCs in the local microenvironment of immune cells was not considered in relation to bone healing. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs.
    Journal of Immunology Research 01/2015; 2015:1-17. DOI:10.1155/2015/752510 · 2.93 Impact Factor
  • Source
    • "These various options were mainly experimented for bone tissue engineering, and gave interesting preliminary clinical results [104] [105] [106] [107] [108] [109] [110]. However several authors also noticed than the best results were always obtained when the platelet gel was reinforced with a fibrin glue [111] [112]: in these tissue engineering applications, the platelets and growth factors alone are not sufficient, the key role of the fibrin matrix as a biological binder and supporting scaffold was once again confirmed. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent developement of platelet concentrate for surgical use is an evolution of the fibrin glue technologies used since many years. The initial concept of these autologous preparations was to concentrate platelets and their growth factors in a plasma solution, and to activate it into a fibrin gel on a surgical site, in order to improve local healing. These platelet suspensions were often called Platelet-Rich Plasma (PRP) like the platelet concentrate used in transfusion medicine, but many different technologies have in fact been developed; some of them are even no more platelet suspensions, but solid fibrin-based biomaterials called Platelet-Rich Fibrin (PRF). These various technologies were tested in many different clinical fields, particularly oral and maxillofacial surgery, Ear-Nose-Throat surgery, plastic surgery, orthopaedic surgery, sports medicine, gynecologic and cardiovascular surgery and ophthalmology. This field of research unfortunately suffers from the lack of a proper accurate terminology and the associated misunderstandings, and the literature on the topic is quite contradictory. Indeed, the effects of these preparations cannot be limited to their growth factor content: these products associate many actors of healing in synergy, such as leukocytes, fibrin matrix, and circulating progenitor cells, and are in fact as complex as blood itself. If platelet concentrates were first used as surgical adjuvants for the stimulation of healing (as fibrin glues enriched with growth factors), many applications for in situ regenerative medicine and tissue engineering were developed and offer a great potential. However, the future of this field is first dependent on his coherence and scientific clarity. The objectives of this article is to introduce the main definitions, problematics and perspectives that are described in this special issue of Current Pharmaceutical Biotechnology about platelet concentrates.
    Current pharmaceutical biotechnology 07/2011; 13(7):1121-30. DOI:10.2174/138920112800624292 · 2.51 Impact Factor
  • Source
    • "While some studies report a significant improvement of bone healing in presence of PRP [1] [2] [3] [4] [5] [6], other studies were not able to detect any positive influence [7] [8] [9] [10]. Nevertheless, the influence of PRP on mesenchymal stem cells has only been investigated on cells derived from bone marrow (BMSC). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim of the present study was to compare the osteogenic potential of bone marrow derived mesenchymal stem cells (BMSC) and adipose-tissue derived stem cells (ASC) and to evaluate the influence of platelet-rich plasma (PRP) on the osteogenic capacity of ASC in a large animal model. Ovine BMSC (BMSC-group) and ASC (ASC-group) were seeded on mineralized collagen sponges and implanted into a critical size defect of the sheep tibia (n=5 each). In an additional group, platelet-rich plasma (PRP) was used in combination with ASC (PRP-group). Unloaded mineralized collagen (EMPTY-group) served as control (n=5 each). Radiographic evaluation was performed every 2 weeks, after 26 weeks histological analysis was performed. Radiographic evaluation revealed a significantly higher amount of newly formed bone in the BMSC-group compared to the ASC-group at week 10 and compared to EMPTY-group from week 12 (all p<0.05). A superiority on radiographic level concerning bone formation of the PRP-group versus the empty control group was found (p<0.05), but not for the ASC-group. Histological analysis confirmed radiographic evaluation finding analogous significances. In conclusion, ASC seem to be inferior to BMSC in terms of their osteogenic potential but that can partially be compensated by the addition of PRP.
    Biomaterials 02/2010; 31(13):3572-9. DOI:10.1016/j.biomaterials.2010.01.085 · 8.31 Impact Factor
Show more