Article

The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene.

Department of Pathology and Laboratory Medicine, University of British Columbia and Vancouver Coastal Health Vancouver, BC, Canada.
Brain (Impact Factor: 10.23). 12/2006; 129(Pt 11):3081-90. DOI: 10.1093/brain/awl271
Source: PubMed

ABSTRACT The most common pathology in frontotemporal dementia (FTD) is tau-negative, ubiquitin-immunoreactive (ub-ir) neuronal inclusions (FTLD-U). Recently, we identified mutations in the progranulin (PGRN) gene as the cause of autosomal dominant FTLD-U linked to chromosome 17. Here, we describe the neuropathology in 13 patients from 6 different families, each with FTD caused by a different PGRN mutation. The most consistent feature was the presence of ub-ir lentiform neuronal intranuclear inclusions (NII) in the neocortex and striatum. In addition, the neocortex showed moderate-to-severe superficial laminar spongiosis, chronic degenerative changes, ub-ir neurites and well-defined ub-ir neuronal cytoplasmic inclusions (NCI). In the striatum, there were numerous ub-ir neurites. NCI in the hippocampus usually had a granular appearance. In contrast, familial FTLD-U cases without PGRN mutations had no NII, less severe neocortical and striatal pathology and hippocampal NCI that were more often solid. Eight cases in which genetic analysis was not available also had NII and an overall pathology similar to those with proven mutations. None of our cases of FTLD-U without NII showed the same pattern of pathology as those with mutations. These findings suggest that FTD caused by PGRN mutations has a recognizable pathology with the most characteristic feature being ub-ir NII.

0 Followers
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal dementia. We used a comprehensive neuropsychological battery to investigate whether early cognitive changes could be detected in GRN mutation carriers before dementia onset. Twenty-four at-risk members from six families with known GRN mutations underwent detailed neuropsychological testing. Group differences were investigated by domains of attention, language, visuospatial function, verbal memory, non-verbal memory, working memory and executive function. There was a trend for mutation carriers (n=8) to perform more poorly than non-carriers (n=16) across neuropsychological domains, with significant between group differences for visuospatial function (p<.04; d=0.92) and working memory function (p<.02; d=1.10). Measurable cognitive differences exist before the development of frontotemporal dementia in subjects with GRN mutations. The neuropsychological profile of mutation carriers suggests early asymmetric, right hemisphere brain dysfunction that is consistent with recent functional imaging data from our research group and the broader literature. (JINS, 2014, 20, 1-10).
    Journal of the International Neuropsychological Society 07/2014; DOI:10.1017/S1355617714000551 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.
    Frontiers in Molecular Neuroscience 01/2015; 8:9. DOI:10.3389/fnmol.2015.00009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the search for therapeutic modifiers, frontotemporal dementia (FTD) has traditionally been overshadowed by other conditions such as Alzheimer's disease (AD). A clinically and pathologically diverse condition, FTD has been galvanized by a number of recent discoveries such as novel genetic variants in familial and sporadic forms of disease and the identification of TAR DNA binding protein of 43 kDa (TDP-43) as the defining constituent of inclusions in more than half of cases. In combination with an ever-expanding knowledge of the function and dysfunction of tau—a protein which is pathologically aggregated in the majority of the remaining cases—there exists a greater understanding of FTD than ever before. These advances may indicate potential approaches for the development of hypothetical therapeutics, but FTD remains highly complex and the roles of tau and TDP-43 in neurodegeneration are still wholly unclear. Here the challenges facing potential therapeutic strategies are discussed, which include sufficiently accurate disease diagnosis and sophisticated technology to deliver effective therapies.
    Frontiers in Aging Neuroscience 08/2014; 6. DOI:10.3389/fnagi.2014.00204 · 2.84 Impact Factor

Full-text (2 Sources)

Download
69 Downloads
Available from
Jun 5, 2014