Article

Perception of elliptic biological motion.

Developmental Cognitive and Social Neuroscience Unit, Department of Paedriatric Neurology and Child Development, Children's Hospital, University of Tübingen, Germany.
Perception (Impact Factor: 1.31). 02/2006; 35(8):1137-47. DOI: 10.1068/p5482
Source: PubMed

ABSTRACT We tested the ability of the mature visual system for discrimination between types of elliptic biological motion on the basis of event kinematics. Healthy adult volunteers were presented with point-light displays depicting elliptic motion when only a single dot, a moving point-light arm, or a whole point-light human figure was visible. The displays were created in accordance with the two-thirds power kinematic law (natural motion), whereas the control displays violated this principle (unnatural motion). On each trial, participants judged whether the display represented natural or unnatural motion. The findings indicate that adults are highly sensitive to violation of the two-thirds power kinematic law. Notably, participants can easily discriminate between natural and unnatural motions without recognising the stimuli, which suggests that people implicitly use kinematic information. Most intriguing, event recognition seems to diminish the capacity to judge whether event kinematics is unnatural. We discuss possible ways for a cross-talk between perception and production of biological movement, and the brain mechanisms involved in biological motion processing.

0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During straight walking, the body centre of mass (CM) follows a 3D figure-of-eight ("bow-tie") trajectory about 0.2 m long and with sizes around 0.05 m on each orthogonal axis. This was shown in 18 healthy adults walking at 0.3 to 1.4 ms⁻¹ on a force-treadmill (Tesio and Rota, 2008). Double integration of force signals can provide both the changes of mechanical energy of the CM and its 3D displacements (Tesio et al., 2010). In the same subjects, the relationship between the tangential speed of the CM, Vt, the curvature, C, and its inverse--the radius of curvature, r(c), were analyzed. A "power law" (PL) model was applied, i.e. logVt was regressed over logr(c). A PL is known to apply to the most various goal-directed planar movements (e.g. drawing), where the coefficient of logr(c), β, usually takes values around 13. When the PL was fitted to the whole dataset, β was 0.346 and variance explanation, R², was 59.8%. However, when the data were split into low- and high-curvature subsets (LC, HC, arbitrary cut-off of C=0.05 mm⁻¹, r(c)=20mm), β was 0.185 in the LC (R² 0.214) and 0.486 in the HC (R² 0.536) tracts. R² on the whole dataset increased to 0.763 if the LC-HC classification of the forward speed and their interaction entered the model. The β coefficient, the curvature C, and the pendulum-like recovery of mechanical energy were lower during the double foot-ground contact phase, compared to the single contact. Along the CM trajectory, curvature and muscle power output peaked together around the inversions of lateral direction. Non-zero torsion values were randomly distributed along 60% of the trajectory, suggesting that this is not segmented into piecewise planar tracts. It is proposed that the trajectory can be segmented into one tract that is more actively controlled (tie) where a PL fits poorly and another tract which is more ballistic (bow) where a PL fits well. Results need confirmation through more appropriate 3D PL modelling.
    Journal of Biomechanics 11/2010; 44(4):732-40. · 2.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of human observers to detect 'biological motion' of humans and animals has been taken as evidence of specialized perceptual mechanisms. This ability remains unimpaired when the stimulus is reduced to a moving array of dots representing only the joints of the agent: the point light walker (PLW) (G. Johansson, 1973). Such stimuli arguably contain underlying form, and recent debate has centered on the contributions of form and motion to their processing (J. O. Garcia & E. D. Grossman, 2008; E. Hiris, 2007). Human actions contain periodic variations in form; we exploit this by using brief presentations to reveal how these natural variations affect perceptual processing. Comparing performance with static and dynamic presentations reveals the influence of integrative motion signals. Form information appears to play a critical role in biological motion processing and our results show that this information is supported, not replaced, by the integrative motion signals conveyed by the relationships between the dots of the PLW. However, our data also suggest strong task effects on the relevance of the information presented by the PLW. We discuss the relationship between task performance and stimulus in terms of form and motion information, and the implications for conclusions drawn from PLW based studies.
    Journal of Vision 01/2009; 9(3):28.1-11. · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the fact that nonverbal dyadic social interactions are abundant in the environment, the neural mechanisms underlying their processing are not yet fully understood. Research in the field of social neuroscience has suggested that two neural networks appear to be involved in social understanding: (1) the action observation network (AON) and (2) the social neural network (SNN). The aim of this study was to determine the differential contributions of the AON and the SNN to the processing of nonverbal behavior as observed in dyadic social interactions. To this end, we used short computer animation sequences displaying dyadic social interactions between two virtual characters and systematically manipulated two key features of movement activity, which are known to influence the perception of meaning in nonverbal stimuli: (1) movement fluency and (2) contingency of movement patterns. A group of 21 male participants rated the "naturalness" of the observed scenes on a four-point scale while undergoing fMRI. Behavioral results showed that both fluency and contingency significantly influenced the "naturalness" experience of the presented animations. Neurally, the AON was preferentially engaged when processing contingent movement patterns, but did not discriminate between different degrees of movement fluency. In contrast, regions of the SNN were engaged more strongly when observing dyads with disturbed movement fluency. In conclusion, while the AON is involved in the general processing of contingent social actions, irrespective of their kinematic properties, the SNN is preferentially recruited when atypical kinematic properties prompt inferences about the agents' intentions. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 06/2013; · 6.88 Impact Factor

Full-text

View
3 Downloads
Available from
Sep 15, 2014