Murine spinal cord explants: a model for evaluating axonal growth and myelination in vitro.

Applied Neurobiology Group, Institute of Comparative Medicine, Division of Cell Sciences, University of Glasgow Veterinary School, Glasgow, Scotland, UK.
Journal of Neuroscience Research (Impact Factor: 2.73). 01/2007; 84(8):1703-15. DOI: 10.1002/jnr.21084
Source: PubMed

ABSTRACT In vitro models of myelinating central nervous system axons have mainly been of two types, organotypic or dissociated. In organotypic cultures, the tissue fragment is thick and usually requires sectioning (physically or optically) before visual examination. In dissociated cultures, tissue is dispersed across the culture surface, making it difficult to measure the extent of myelinated fiber growth. We aimed to develop a method of culturing myelinated CNS fibers in defined medium that could be 1) studied by standard immunofluorescence microscopy (i.e., monolayer type culture), 2) used to measure axonal growth, and 3) used to evaluate the effect of substrate and media components on axonal growth and myelination. We used 120-micro m slices of embryonic murine spinal cord as a focal source of CNS tissue from which myelinated axons could extend in a virtual monolayer. Explants were cultured on both poly-L-lysine and astrocytes. The latter were used because they are the scaffold on which axonal growth and myelination occurs during normal development. Outgrowth from the explant and myelination of axons was poor on poly-L-lysine but was promoted by an astrocyte bed layer. The best myelin formation occurred in defined media based on DMEM using N2 mix; it was not promoted by Sato mix or Neurobasal medium with B27 supplement. Neuronal survival was poor in serum-containing medium. This tissue culture model should facilitate the study of factors involved in promoting outgrowth of CNS axons and their myelination. As such it is relevant to studies on myelination and spinal cord repair.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported that hair follicles contain multipotent stem cells which express nestin. The nestin-expressing cells form the hair follicle sensory nerve. In vitro, the nestin-expressing hair follicle cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, the sciatic nerve was excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice). The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle. When the ND-GFP cells in the mouse sciatic nerve cultured on Gelfoam® and were imaged by confocal microscopy, they were observed forming fibers extending the nerve. The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75(NTR) and TrkB which is associated with neurons. The fibers also contain nestin-negative spherical cells expressing GFAP, a Schwann-cell marker. The β-III tubulin-positive fibers had growth cones on their tips expressing F-actin, indicating they are growing axons. When the sciatic nerve from mice ubiquitously expressing red fluorescent protein (RFP) was co-cultured on Gelfoam® with the sciatic nerve from ND-GFP transgenic mice, the interaction of nerves was observed. Proliferating nestin-expressing cells in the injured sciatic nerve were also observed in vivo. Nestin-expressing cells were also observed in posterior nerves but not in the spinal cord itself, when placed in 3-D Gelfoam® culture. The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration.
    PLoS ONE 06/2013; 8(6):e67153. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oligodendrocytes are neuroglial cells responsible, within the central nervous system, for myelin sheath formation that provides an electric insulation of axons and fasten the transmission of electrical signals. In order to be able to produce myelin, oligodendrocytes progress through a series of differentiation steps from oligodendrocyte precursor cells to mature oligodendrocytes (migration, increase in morphologic complexity and expression pattern of specific markers), which are modulated by cross talk with other nerve cells. If during the developmental stage any of these mechanisms is affected by toxic or external stimuli it may result into impaired myelination leading to neurological deficits. Such being the case, several approaches have been developed to evaluate how oligodendrocyte development and myelination may be impaired. The present review aims to summarize changes that oligodendrocytes suffer from precursor cells to mature ones, and to describe and discuss the different in vitro models used to evaluate not only oligodendrocyte development (proliferation, migration, differentiation and ability to myelinate), but also their interaction with neurons and other glial cells. First we discuss the temporal oligodendrocyte lineage progression, highlighting the differences between human and rodent, usually used as tissue supply for in vitro cultures. Second we describe how to perform and characterize the different in vitro cultures, as well as the methodologies to evaluate oligodendrocyte functionality in each culture system, discussing their advantages and disadvantages. Finally, we briefly discuss the current status of in vivo models for oligodendrocyte development and myelination.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Backgound: Myelination is a very complex process that requires the cross talk between various neural cell types. Previously, using cytosolic or membrane associated GFP tagged neurospheres, we followed the interaction of oligodendrocytes with axons using time-lapse imaging in vitro and ex vivo and demonstrated dynamic changes in cell morphology. In this study we focus on GFP tagged astrocytes differentiated from neurospheres and their interactions with axons.
    BMC Neuroscience 05/2014; 15(1):59. · 2.85 Impact Factor


1 Download