Article

Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway

Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2007; 281(52):39891-6. DOI: 10.1074/jbc.M608155200
Source: PubMed

ABSTRACT TAK1 (transforming growth factor beta-activated kinase 1) is a serine/threonine kinase that is a mitogen-activated protein kinase kinase kinase and an essential intracellular signaling component in inflammatory signaling pathways. Upon stimulation of cells with inflammatory cytokines, TAK1 binds proteins that stimulate autophosphorylation within its activation loop and is thereby catalytically activated. This activation is transient; it peaks within a couple of minutes and is subsequently down-regulated rapidly to basal levels. The mechanism of down-regulation of TAK1 has not yet been elucidated. In this study, we found that toxin inhibition of type 2A protein phosphatases greatly enhances interleukin 1 (IL-1)-dependent phosphorylation of Thr-187 in the TAK1 activation loop as well as the catalytic activity of TAK1. From proteomic analysis of TAK1-binding proteins, we identified protein phosphatase 6 (PP6), a type-2A phosphatase, and demonstrated that PP6 associated with and inactivated TAK1 by dephosphorylation of Thr-187. Ectopic and endogenous PP6 co-precipitated with TAK1, and expression of PP6 reduced IL-1 activation of TAK1 but did not affect osmotic activation of MLK3, another MAPKKK. Reduction of PP6 expression by small interfering RNA enhances IL-1-induced phosphorylation of Thr-187 in TAK1. Enhancement occurred without change in levels of PP2A showing specificity for PP6. Our results demonstrate that PP6 specifically down-regulates TAK1 through dephosphorylation of Thr-187 in the activation loop, which is likely important for suppressing inflammatory responses via TAK1 signaling pathways.

0 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphatase 2A (PP2A), a family of the major serine/threonine phosphatases in cells, regulates many aspects of physiological processes. However, isoform-specific substrates and the biological role of each specific member of the PP2A family remain largely unknown. In this study, we investigated whether PP2A catalytic subunit Cα (PP2Acα) is involved in chronic hepatic injury and fibrosis. A hepatocyte-specific PP2Acα ablation mice model was established to examine the effect of PP2Acα on carbon tetrachloride- (CCl4-) induced chronic hepatic injury and fibrosis. Our results showed that PP2Acα knockout mice were less susceptible to chronic CCl4-induced liver injury as evidenced by lower levels of serum alanine aminotransferase and aspartate aminotransferase, decreased hepatocyte proliferation, and increased rate of apoptotic removal of the injured hepatocytes. PP2Acα knockout mice also displayed a lesser extent of liver fibrosis as a significant decrease in the proportion of α-smooth muscle actin-expressing cells and collagen deposition was observed in their liver tissues. Furthermore, the levels of serum TGF-β1 and hepatocytic Smad phosphorylation were reduced in the PP2Acα knockout mice. These data suggest that hepatocyte-specific ablation of PP2Acα protects against CCl4-induced chronic hepatic injury and fibrogenesis and the protective effect is mediated at least partially through the impaired TGF-β1/Smad signaling.
    01/2015; 2015:1-10. DOI:10.1155/2015/794862
  • [Show abstract] [Hide abstract]
    ABSTRACT: The respiratory epithelium consists of lung sentinel cells, which are the first to contact inhaled inflammatory insults, including air pollutants, smoke, and microorganisms. To avoid damaging exuberant or chronic inflammation, the inflammatory process must be tightly controlled and terminated once the insult is mitigated. Inflammation resolution is now known to be an active process involving a new genus of lipid mediators, called "specialized proresolving lipid mediators," that includes resolvin D1 (RvD1). We and others have reported that RvD1 counteracts proinflammatory signaling and promotes resolution. A knowledge gap is that the specific cellular targets and mechanisms of action for RvD1 remain largely unknown. In this article, we identified the mechanism whereby RvD1 disrupts inflammatory mediator production induced by the viral mimic polyinosinic-polycytidylic acid [poly(I:C)] in primary human lung epithelial cells. RvD1 strongly suppressed the viral mimic poly(I:C)-induced IL-6 and IL-8 production and proinflammatory signaling involving MAPKs and NF-κB. Most importantly, we found that RvD1 inhibited the phosphorylation of TAK1 (TGF-β-activated kinase 1), a key upstream regulatory kinase common to both the MAPK and NF-κB pathways, by inhibiting the formation of a poly(I:C)-induced signaling complex composed of TAK1, TAB1 (TAK1 binding protein), and TRAF6 (TNF receptor-associated factor 6). We confirmed that ALX/FPR2 and GPR32, two RvD1 receptors, were expressed on human small airway epithelial cells. Furthermore, blocking these receptors abrogated the inhibitory action of RvD1. In this article, we present the idea that RvD1 has the potential to be used as an anti-inflammatory and proresolving agent, possibly in the context of exuberant host responses to damaging respirable agents such as viruses.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amino acid deprivation promotes the inhibition of the kinase complex mTORC1 (mammalian target of rapamycin complex 1) and activation of the kinase GCN2 (general control nonrepressed 2). Signaling pathways downstream of both kinases have been thought to independently induce autophagy. We showed that these two amino acid-sensing systems are linked. We showed that pharmacological inhibition of mTORC1 led to activation of GCN2 and phosphorylation of the eukaryotic initiation factor 2α (eIF2α) in a mechanism dependent on the catalytic subunit of protein phosphatase 6 (PP6C). Autophagy induced by pharmacological inhibition of mTORC1 required PP6C, GCN2, and eIF2α phosphorylation. Although some of the PP6C mutants found in melanoma did not form a strong complex with PP6 regulatory subunits and were rapidly degraded, these mutants paradoxically stabilized PP6C encoded by the wild-type allele and increased eIF2α phosphorylation. Furthermore, these PP6C mutations were associated with increased autophagy in vitro and in human melanoma samples. Thus, these data showed that GCN2 activation and phosphorylation of eIF2α in response to mTORC1 inhibition are necessary for autophagy. Additionally, we described a role for PP6C in this process and provided a mechanism for PP6C mutations associated with melanoma. Copyright © 2015, American Association for the Advancement of Science.
    Science Signaling 03/2015; 8(367):ra27. DOI:10.1126/scisignal.aaa0899 · 7.65 Impact Factor

Preview

Download
0 Downloads
Available from